首站-论文投稿智能助手
典型文献
Exact solutions to the angular Teukolsky equation with s ≠ 0
文献摘要:
We first convert the angular Teukolsky equation under the special condition of τ≠0,s ≠ 0,m=0 into a confluent Heun differential equation(CHDE)by taking different function transformation and variable substitution.And then according to the characteristics of both CHDE and its analytical solution expressed by a confluent Heun function(CHF),we find two linearly dependent solutions corresponding to the same eigenstate,from which we obtain a precise energy spectrum equation by constructing a Wronskian determinant.After that,we are able to localize the positions of the eigenvalues on the real axis or on the complex plane when τ is a real number,a pure imaginary number,and a complex number,respectively and we notice that the relation between the quantum number I and the spin weight quantum number s satisfies the relation l =丨s丨+n,n=0,1,2….The exact eigenvalues and the corresponding normalized eigenfunctions given by the CHF are obtained with the aid of Maple.The features of the angular probability distribution(APD)and the linearly dependent characteristics of two eigenfunctions corresponding to the same eigenstate are discussed.We find that for a real number τ,the eigenvalue is a real number and the eigenfunction is a real function,and the eigenfunction system is an orthogonal complete system,and the APD is asymmetric in the northern and southern hemispheres.For a pure imaginary number τ,the eigenvalue is still a real number and the eigenfunction is a complex function,but the APD is symmetric in the northern and southern hemispheres.When τ is a complex number,the eigenvalue is a complex number,the eigenfunction is still a complex function,and the APD in the northern and southern hemispheres is also asymmetric.Finally,an approximate expression of complex eigenvalues is obtained when n is greater than 丨s丨.
文献关键词:
作者姓名:
Chang-Yuan Chen;Xiao-Hua Wang;Yuan You;Dong-Sheng Sun;Fa-Lin Lu;Shi-Hai Dong
作者机构:
School of Physics and Electronic Engineering,Yancheng Teachers University,Yancheng,224007,China;Research Center for Quantum Physics,Huzhou University,Huzhou,313000,China;Laboratorio de Información Cuántica,CIDETEC,Instituto Politécnico Nacional,UPALM,C.P 07700,CDMX,Mexico
文献出处:
引用格式:
[1]Chang-Yuan Chen;Xiao-Hua Wang;Yuan You;Dong-Sheng Sun;Fa-Lin Lu;Shi-Hai Dong-.Exact solutions to the angular Teukolsky equation with s ≠ 0)[J].理论物理,2022(11):1-15
A类:
Teukolsky,Heun,CHDE
B类:
Exact,solutions,angular,equation,We,first,convert,under,special,condition,into,confluent,differential,by,taking,transformation,variable,substitution,And,then,according,characteristics,both,its,analytical,expressed,CHF,find,two,linearly,dependent,corresponding,same,eigenstate,from,which,precise,energy,spectrum,constructing,Wronskian,determinant,After,that,are,localize,positions,eigenvalues,real,axis,complex,plane,when,number,pure,imaginary,respectively,notice,relation,between,quantum,spin,weight,satisfies,+n,exact,normalized,eigenfunctions,given,obtained,aid,Maple,features,probability,distribution,APD,discussed,system,orthogonal,complete,asymmetric,northern,southern,hemispheres,For,still,When,also,Finally,approximate,expression,greater,than
AB值:
0.394964
相似文献
Pushing the limit of thermal conductivity of MAX borides and MABs
Shaohan Li;Weiwei Sun;Yi Luo;Jin Yu;Litao Sun;Bao-Tian Wang;Ji-Xuan Liu;Guo-Jun Zhang;Igor Di Marco-School of Materials Science and Engineering,Southeast University,Nanjing 211189,China;Jiangsu Province Key Laboratory of Advanced Metallic Materials,Southeast University,Nanjing 211189,China;SEU-FEI Nano-Pico Center,Key Laboratory of MEMS of Ministry of Education,Southeast University,Nanjing 210096,China;Institute of High Energy Physics,Chinese Academy of Sciences(CAS),Beijing 100049,China;Collaborative Innovation Center of Extreme Optics,Shanxi University,Taiyuan 030006,China;State Key Laboratory for Modification of Chemical Fibers and Polymer Materials,College of Materials Science and Engineering,Institute of Functional Materials,Donghua University,Shanghai 201620,China;Asia Pacific Center for Theoretical Physics,Pohang,Gyeonbuk 790-784,Republic of Korea;Department of Physics,POSTECH,Pohang,Gyeonbuk 790-784,Republic of Korea;Department of Physics and Astronomy,Uppsala University,Box 516,Uppsala SE-75120,Sweden
Stronger Hardy-like proof of quantum contextuality
WEN-RONG QI;JIE ZHOU;LING-JUN KONG;ZHEN-PENG XU;HUI-XIAN MENG;RUI LIU;ZHOU-XIANG WANG;CHENGHOU TU;YONGNAN LI;ADáN CABELLO;JING-LING CHEN;HUI-TIAN WANG-Key Laboratory of Weak-Light Nonlinear Photonics and School of Physics,Nankai University,Tianjin 300071,China;School of Physics,Henan Normal University,Xinxiang 453007,China;Theoretical Physics Division,Chern Institute of Mathematics,Nankai University,Tianjin 300071,China;National Laboratory of Solid State Microstructures,Nanjing University,Nanjing 210093,China;Collaborative Innovation Center of Advanced Microstructures,Nanjing University,Nanjing 210093,China;Naturwissenschaftlich-Technische Fakult?t,Universit?t Siegen,57068 Siegen,Germany;Departamento de Fisica Aplicada Ⅱ,Universidad de Sevilla,E-41012 Sevilla,Spain
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。