首站-论文投稿智能助手
典型文献
Gold Self-Relay Catalysis Enabling[3,3]-Sigmatropic Rearrange-ment/Nazarov Cyclization and Allylic Alkylation Cascade for Constructing All-Carbon Quaternary Stereocenters
文献摘要:
Molecular scaffolds endowed with all-carbon quaternary stereocenter are ubiquitous in natural products and significant bioactive molecules.However,efficient construction of this type of structure units is full of challenge due to their congested chemical envi-ronment.Herein,we report a new gold(Ⅰ)self-relay catalysis merging[3,3]-sigmatropic rearrangement/Nazarov cyclization with al-lylic alkylation starting from 1,3-enyne acetates and allylic alcohols,producing a wide range of synthetically important allyl cyclo-pentenones with an all-carbon quaternary stereocenter in good yields under mild conditions.This protocol demonstrates the precise control of regioselectivity,high functional group tolerance of substrates and the low loading of gold catalyst without inert atmos-phere protection,providing a catalytic and efficient entry to all-carbon quaternary stereocenters
文献关键词:
作者姓名:
Fan-Tao Meng;Xiao-Yan Qin;Jing Li;Tian-Shu Zhang;Shu-Jiang Tu;Bo Jiang;Wen-Juan Hao
作者机构:
School of Chemistry&Materials Science,Jiangsu Normal University,Xuzhou,Jiangsu 221116,China;School of Materials and Chemical Engineering,Xuzhou University of Technology,Xuzhou,Jiangsu 221018,China
引用格式:
[1]Fan-Tao Meng;Xiao-Yan Qin;Jing Li;Tian-Shu Zhang;Shu-Jiang Tu;Bo Jiang;Wen-Juan Hao-.Gold Self-Relay Catalysis Enabling[3,3]-Sigmatropic Rearrange-ment/Nazarov Cyclization and Allylic Alkylation Cascade for Constructing All-Carbon Quaternary Stereocenters)[J].中国化学(英文版),2022(06):687-692
A类:
Sigmatropic,Rearrange,Nazarov,Cyclization,Allylic,Stereocenters,stereocenter,sigmatropic,lylic,enyne,acetates,pentenones,stereocenters
B类:
Gold,Self,Relay,Catalysis,Enabling,Alkylation,Cascade,Constructing,Carbon,Quaternary,Molecular,scaffolds,endowed,carbon,quaternary,are,ubiquitous,natural,products,significant,bioactive,molecules,However,efficient,construction,this,type,structure,units,full,challenge,due,their,congested,chemical,envi,ronment,Herein,report,new,gold,self,relay,catalysis,merging,rearrangement,cyclization,alkylation,starting,from,allylic,alcohols,producing,wide,synthetically,important,cyclo,good,yields,under,mild,conditions,This,protocol,demonstrates,precise,control,regioselectivity,high,functional,group,tolerance,substrates,low,loading,catalyst,without,inert,atmos,phere,protection,providing,catalytic,entry
AB值:
0.628578
相似文献
Biomass-Derived Carbon Heterostructures Enable Environmentally Adaptive Wideband Electromagnetic Wave Absorbers
Zhichao Lou;Qiuyi Wang;Ufuoma I.Kara;Rajdeep S.Mamtani;Xiaodi Zhou;Huiyang Bian;Zhihong Yang;Yanjun Li;Hualiang Lv;Solomon Adera;Xiaoguang Wang-Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources,Nanjing Forestry University,Nanjing 210037,People's Republic of China;Willian G.Lowrie Department of Chemical and Biomolecular Engineering,The Ohio State University,Columbus,OH 43210,USA;Institute of Materials Research and Engineering,Agency for Sciences,Technology and Research,Singapore,Singapore;Department of Mechanical Engineering,University of Michigan,Ann Arbor,MI 48109,USA;Sustainability Institute,The Ohio State University,Columbus,OH 43210,USA
Conversion of Catalytically Inert 2D Bismuth Oxide Nanosheets for Effective Electrochemical Hydrogen Evolution Reaction Catalysis via Oxygen Vacancy Concentration Modulation
Ziyang Wu;Ting Liao;Sen Wang;Janith Adikaram Mudiyanselage;Aaron S.Micallef;Wei Li;Anthony P.O'Mullane;Jianping Yang;Wei Luo;Kostya Ostrikov;Yuantong Gu;Ziqi Sun-School of Mechanical,Medical and Process Engineering,Queensland University of Technology,2 George Street,Brisbane,QLD 4000,Australia;Centre for Materials Science,Queensland University of Technology,2 George Street,Brisbane,QLD 4000,Australia;School of Earth and Atmospheric Sciences,Queensland University of Technology,2 George Street,Brisbane,QLD 4000,Australia;School of Chemistry and Physics,Queensland University of Technology,2 George Street,Brisbane,QLD 4000,Australia;Central Analytical Research Facility,Queensland University of Technology,2 George Street,Brisbane,QLD 4000,Australia;State Key Laboratory for Modification of Chemical Fibers and Polymer Materials,College of Materials Science and Engineering,Donghua University,Shanghai 201620,People's Republic of China
Enabling Multi-Chemisorption Sites on Carbon Nanofibers Cathodes by an In-situ Exfoliation Strategy for High-Performance Zn-Ion Hybrid Capacitors
Hongcheng He;Jichun Lian;Changmiao Chen;Qiaotian Xiong;Cheng Chao Li;Ming Zhang-Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education,Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices,Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy,School of Physics and Electronics,College of Semiconductors(College of Integrated Circuits),Hunan University,Changsha 410082,People's Republic of China;Tsinghua Shenzhen International Graduate School,Tsinghua University,Shenzhen 518055,People's Republic of China;School of Chemical Engineering and Light Industry,Guangdong University of Technology,Guangzhou 510006,People's Republic of China
Effects of Flexible Conjugation-Break Spacers of Non-Conjugated Polymer Acceptors on Photovoltaic and Mechanical Properties of All-Polymer Solar Cells
Qiaonan Chen;Yung Hee Han;Leandro R.Franco;Cleber F.N.Marchiori;Zewdneh Genene;C.Moyses Araujo;Jin-Woo Lee;Tan Ngoc-Lan Phan;Jingnan Wu;Donghong Yu;Dong Jun Kim;Taek-Soo Kim;Lintao Hou;Bumjoon J.Kim;Ergang Wang-Siyuan Laboratory,Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials,Department of Physics,Jinan University,Guangzhou 510632,People's Republic of China;Department of Chemistry and Chemical Engineering,Chalmers University of Technology,SE-412 96,G?teborg,Sweden;Department of Chemical and Biomolecular Engineering,Korea Advanced Institute of Science and Technology(KAIST),Daejeon 34141,Republic of Korea;Department of Engineering and Physics,Karlstad University,65188 Karlstad,Sweden;Materials Theory Division,Department of Physics and Astronomy,Uppsala University,75120 Uppsala,Sweden;Department of Chemistry and Bioscience,Aalborg University,9220 Aalborg,Denmark;Sino-Danish Center for Education and Research,8000 Aarhus,Denmark;Department of Mechanical Engineering,Korea Advanced Institute of Science and Technology(KAIST),Daejeon 34141,Republic of Korea;School of Materials Science and Engineering,Zhengzhou University,Zhengzhou 450001,People's Republic of China
Inner Co Synergizing Outer Ru Supported on Carbon Nanotubes for Efficient pH-Universal Hydrogen Evolution Catalysis
Jian Chen;Yuan Ha;Ruirui Wang;Yanxia Liu;Hongbin Xu;Bin Shang;Renbing Wu;Hongge Pan-Institute of Science and Technology for New Energy,Xi'an Technological University,Xi'an 710021,People's Republic of China;School of Advanced Materials and Nanotechnology,Xidian University,Xi'an 710126,People's Republic of China;Department of Materials Science,Fudan University,Shanghai 200433,People's Republic of China;State Key Laboratory of New Textile Materials and Advanced Processing Technologies,Wuhan Textile University,Wuhan 430073,People's Republic of China;State Key Laboratory of Silicon Materials and School of Materials Science and Engineering,Zhejiang University,Hangzhou 310027,People's Republic of China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。