首站-论文投稿智能助手
典型文献
Experimental and Theoretical Study on Piezoresistive Behavior of Compressible Melamine Sponge Modified by Carbon-based Fillers
文献摘要:
High-performance compression sensors have been playing an increasingly important role in human motion detection,health monitoring and human-machine interfaces over recent years.However,it remains a great challenge to develop theoretical models providing practical guidance to the sensor design.Herein,carbon black(CB),carbon nanotubes(CNTs)and graphene nanoplatelets(GNPs)were respectively incorporated into porous melamine sponges by a facile approach of dip-coating to fabricate compression sensors.Uniaxial compression-resistance tests show that the compressibility,stability and piezoresistive sensitivity of sensors could be tailored by the filler type and concentration.A model considering the number of conductive pathways(NCP)is given to describe the relationship between the resistance change and applied compression,showing extremely good agreement with the experimental data.Also,the correlation between the equivalent filler volume fraction and conductivity is described by the other two models proposed by McLachlan and Kirkpatrick,revealing the electrical percolation thresholds(Φc)for the conductive systems under compression.Among the three fillers,CB particles endowed the composite with the best piezoresistive sensitivity but the largest Φc due to its small size and aspect ratio.A combination of experimental study and theoretical model opens up a way of further understanding the piezoresistive sensing behavior as well as optimizing the electrical property and piezoresistivity of compressive conductive polymer composite.
文献关键词:
作者姓名:
Xiao-Ling Luo;Dirk W.Schubert
作者机构:
Institute of Polymer Materials,Friedrich-Alexander-University Erlangen-Nuremberg,Martensstr.7,Erlangen 91058,Germany;KeyLab Advanced Fiber Technology,Bavarian Polymer Institute,Dr.Mack-Strasse 77,Fürth 90762,Germany
引用格式:
[1]Xiao-Ling Luo;Dirk W.Schubert-.Experimental and Theoretical Study on Piezoresistive Behavior of Compressible Melamine Sponge Modified by Carbon-based Fillers)[J].高分子科学(英文版),2022(11):1503-1512
A类:
McLachlan,piezoresistivity
B类:
Experimental,Theoretical,Study,Piezoresistive,Behavior,Compressible,Melamine,Sponge,Modified,by,Carbon,Fillers,High,performance,compression,sensors,have,been,playing,increasingly,important,role,human,motion,detection,health,monitoring,machine,interfaces,over,recent,years,However,remains,great,challenge,develop,theoretical,models,providing,practical,guidance,design,Herein,carbon,black,CB,nanotubes,CNTs,graphene,nanoplatelets,GNPs,were,respectively,incorporated,into,porous,melamine,sponges,facile,approach,dip,coating,fabricate,Uniaxial,resistance,tests,that,compressibility,stability,piezoresistive,sensitivity,could,tailored,type,concentration,considering,number,conductive,pathways,NCP,given,relationship,between,change,applied,showing,extremely,good,agreement,experimental,data,Also,correlation,equivalent,volume,fraction,conductivity,described,other,two,proposed,Kirkpatrick,revealing,electrical,percolation,thresholds,systems,Among,three,fillers,particles,endowed,composite,best,but,largest,due,its,small,size,aspect,combination,study,opens,up,further,understanding,sensing,behavior,well,optimizing,property,compressive,polymer
AB值:
0.685148
相似文献
High-Porosity Foam-Based Iontronic Pressure Sensor with Superhigh Sensitivity of 9280 kPa-1
Qingxian Liu;Yuan Liu;Junli Shi;Zhiguang Liu;Quan Wang;Chuan Fei Guo-School of Astronautics,Harbin Institute of Technology,Harbin 150001,Heilongjiang,People's Republic of China;Department of Materials Science and Engineering,Southern University of Science and Technology,Shenzhen 518055,People's Republic of China;Department of Mechanics and Aerospace Engineering,Southern University of Science and Technology,Shenzhen 518055,Guangdong,People's Republic of China;Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices,Southern University of Science and Technology,Shenzhen 518055,Guangdong,People's Republic of China;Department of Physics and TcSUH,University of Houston,Houston,TX 77204,USA;8320 Crescent Village Circle Unit 1413,San Jose,CA 95134,USA;Department of Mechanical Engineering,Massachusetts Institute of Technology,Cambridge,MA 02139,USA;Department of Civil and Environmental Engineering,Shantou University,Shantou 515063,Guangdong,People's Republic of China
Biodegradable,Super-Strong,and Conductive Cellulose Macrofibers for Fabric-Based Triboelectric Nanogenerator
Sanming Hu;Jing Han;Zhijun Shi;Kun Chen;Nuo Xu;Yifei Wang;Ruizhu Zheng;Yongzhen Tao;Qijun Sun;Zhong Lin Wang;Guang Yang-College of Life Science and Technology,Huazhong University of Science and Technology,Wuhan 430074,People's Republic of China;Beijing Institute of Nanoenergy and Nanosystems,Chinese Academy of Sciences,Beijing 101400,People's Republic of China;State Key Laboratory of New Textile Materials and Advanced Processing Technologies,Wuhan Textile University,Wuhan 430200,People's Republic of China;School of Nanoscience and Technology,University of Chinese Academy of Sciences,Beijing 100049,People's Republic of China;Center On Nanoenergy Research,School of Physical Science and Technology,Guangxi University,Nanning 530004,People's Republic of China;School of Materials Science and Engineering,Georgia Institute of Technology,Atlanta,GA 30332-0245,USA
A Spiral Graphene Framework Containing Highly Ordered Graphene Microtubes for Polymer Composites with Superior Through-Plane Thermal Conductivity
Jinrui Gong;Xue Tan;Qilong Yuan;Zhiduo Liu;Junfeng Ying;Le Lv;Qingwei Yan;Wubo Chu;Chen Xue;Jinhong Yu;Kazuhito Nishimura;Nan Jiang;Cheng-Te Lin;Wen Dai-Key Laboratory of Marine Materials and Related Technologies,Zhejiang Key Laboratory of Marine Materials and Protective Technologies,Ningbo Institute of Materials Technology and Engineering(NIMTE),Chinese Academy of Sciences,Ningbo,Zhejiang 315201,China;Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,Beijing 100049,China;Centre for Quantum Physics,Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement(MOE);Beijing Key Lab of Nanophotonics&Ultrafine Optoelectronic Systems,School of Physics,Beijing Institute of Technology,Beijing 100081,China;College of Materials Science and Engineering,Hunan University,Changsha,Hunan 410082,China;Advanced Nano-processing Engineering Lab,Mechanical Systems Engineering,Kogakuin University,Tokyo 192-0015,Japan
Approaching Superior Potassium Storage of Carbonaceous Anode Through a Combined Strategy of Carbon Hybridization and Sulfur Doping
Qianqian Yao;Yanmei Gan;Zuju Ma;Xiangying Qian;Suzhi Cai;Yi Zhao;Lunhui Guan;Wei Huang-Fujian Cross Strait Institute of Flexible Electronics(Future Technologies),Fujian Normal University,Fuzhou 350117,China;CAS Key Laboratory of Design and Assembly of Functional Nanostructures,Fujian Key Laboratory of Nanomaterials,Fujian Institute of Research on the Structure of Matter,Chinese Academy of Sciences,Fuzhou 350108,China;School of Environmental and Materials Engineering,Yantai University,Yantai 264005,China;Shaanxi Institute of Flexible Electronics(SIFE),Northwestern Polytechnical University(NPU),Xi'an 710072,China;Key Laboratory of Flexible Electronics(KLOFE)&Institute of Advanced Materials(IAM),Nanjing Tech University(NanjingTech),Nanjing 211800,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。