首站-论文投稿智能助手
典型文献
Polymer Vesicles with Upper Critical Solution Temperature for Near-infrared Light-triggered Transdermal Delivery of Metformin in Diabetic Rats
文献摘要:
Near-infrared light (NIR)triggered transdermal drug delivery systems are of great interest due to their on-demand drug release,which enable to enhance drug treatment efficiency as well as reduce side effect.Herein,a NIR-triggered microneedle (MN) patch array has been fabricated through depositing the photothermal conversion agent and anti-diabetic drug-loaded polymer vesicles with upper critical solution temperature (UCST) into dissolvable polymer matrix.The UCST-type polymer has a clearing point temperature of 41 ℃ and the drug-loaded polymer vesicles present excellent NIR-triggered and temperature responsive drug release behavior in vitro due to the disassociation of polymer vesicles upon NIR irradiation.After applying MNs to diabetic rats,significant hypoglycemic effect is achieved upon interval NIR irradiation and the blood glucose concentration can decrease to normal state for several hours,which enables to achieve the goal of on-demand drug release.This work suggests that the NIR-triggered MN drug release device has a potential application in the treatment of diabetes,especially for those requiring an active drug release manner.
文献关键词:
作者姓名:
Wei Hu;Ya-Wei Su;Yi-Kun Jiang;Wen-Di Fan;Song-Yue Cheng;Zai-Zai Tong;Chao Cen;Guo-Hua Jiang
作者机构:
College of Materials Science and Engineering and Institute of Smart Biomedical Materials,Zhejiang Sci-Tech University,Hangzhou 310018,China;Department of Hepatobiliary and Pancreatic Surgery,the First Affiliated Hospital,Zhejiang University School of Medicine,Hangzhou 310003,China
引用格式:
[1]Wei Hu;Ya-Wei Su;Yi-Kun Jiang;Wen-Di Fan;Song-Yue Cheng;Zai-Zai Tong;Chao Cen;Guo-Hua Jiang-.Polymer Vesicles with Upper Critical Solution Temperature for Near-infrared Light-triggered Transdermal Delivery of Metformin in Diabetic Rats)[J].高分子科学(英文版),2022(02):157-165
A类:
Transdermal,transdermal,dissolvable,disassociation
B类:
Polymer,Vesicles,Upper,Critical,Solution,Temperature,Near,infrared,Light,triggered,Delivery,Metformin,Diabetic,Rats,light,NIR,drug,delivery,systems,great,interest,due,their,demand,release,which,enhance,treatment,efficiency,well,reduce,side,effect,Herein,microneedle,patch,array,has,been,fabricated,through,depositing,photothermal,conversion,agent,anti,diabetic,loaded,polymer,vesicles,upper,critical,solution,temperature,UCST,into,matrix,type,clearing,point,present,excellent,responsive,behavior,vitro,upon,irradiation,After,applying,MNs,rats,significant,hypoglycemic,achieved,interval,blood,glucose,concentration,decrease,normal,state,several,hours,enables,goal,This,work,suggests,that,device,potential,application,diabetes,especially,those,requiring,active,manner
AB值:
0.569488
相似文献
Fire Intumescent,High-Temperature Resistant,Mechanically Flexible Graphene Oxide Network for Exceptional Fire Shielding and Ultra-Fast Fire Warning
Cheng-Fei Cao;Bin Yu;Zuan-Yu Chen;Yong-Xiang Qu;Yu-Tong Li;Yong-Qian Shi;Zhe-Wen Ma;Feng-Na Sun;Qing-Hua Pan;Long-Cheng Tang;Pingan Song;Hao Wang-Centre for Future Materials,University of Southern Queensland,Springfield Central 4300,Australia;State Key Laboratory of Fire Science,University of Science and Technology of China,Hefei 230026,China;College of Material,Chemistry and Chemical Engineering,Key Laboratory of Organosilicon Chemistry and Material Technology of MoE,Hangzhou Normal University,Hangzhou 311121,China;College of Environment and Resources,Fuzhou University,Fuzhou 350116,China;School of Engineering,Zhejiang A&F University,Hangzhou 311300,China
Recent Advancements on Photothermal Conversion and Antibacterial Applications over MXenes-Based Materials
Shuyan Hao;Hecheng Han;Zhengyi Yang;Mengting Chen;Yanyan Jiang;Guixia Lu;Lun Dong;Hongling Wen;Hui Li;Jiurong Liu;Lili Wu;Zhou Wang;Fenglong Wang-Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education,Shandong University,Jinan 250061,People's Republic of China;Department of Virology,School of Public Health,Shandong University,Jinan 250012,People's Republic of China;Shenzhen Research Institute of Shandong University,A301 Virtual University Park in South District of Nanshan High-Tech Zone,Shenzhen 518057,People's Republic of China;School of Civil Engineering,Qingdao University of Technology,Qingdao 266033,People's Republic of China;Department of Breast Surgery,Qilu Hospital,Shandong University,Jinan 250012,People's Republic of China
High-Transconductance,Highly Elastic,Durable and Recyclable All-Polymer Electrochemical Transistors with 3D Micro-Engineered Interfaces
Wenjin Wang;Zhaoxian Li;Mancheng Li;Lvye Fang;Fubin Chen;Songjia Han;Liuyuan Lan;Junxin Chen;Qize Chen;Hongshang Wang;Chuan Liu;Yabin Yang;Wan Yue;Zhuang Xie-School of Materials Science and Engineering,Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education,Sun Yat-Sen University,Guangzhou 510275,People's Republic of China;State Key Laboratory of Optoelectronic Materials and Technologies and Guangdong Province Key Laboratory of Display Material and Technology,School of Electronics and Information Technology,Sun Yat-Sen University,Guangzhou 510275,People's Republic of China
A Spiral Graphene Framework Containing Highly Ordered Graphene Microtubes for Polymer Composites with Superior Through-Plane Thermal Conductivity
Jinrui Gong;Xue Tan;Qilong Yuan;Zhiduo Liu;Junfeng Ying;Le Lv;Qingwei Yan;Wubo Chu;Chen Xue;Jinhong Yu;Kazuhito Nishimura;Nan Jiang;Cheng-Te Lin;Wen Dai-Key Laboratory of Marine Materials and Related Technologies,Zhejiang Key Laboratory of Marine Materials and Protective Technologies,Ningbo Institute of Materials Technology and Engineering(NIMTE),Chinese Academy of Sciences,Ningbo,Zhejiang 315201,China;Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,Beijing 100049,China;Centre for Quantum Physics,Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement(MOE);Beijing Key Lab of Nanophotonics&Ultrafine Optoelectronic Systems,School of Physics,Beijing Institute of Technology,Beijing 100081,China;College of Materials Science and Engineering,Hunan University,Changsha,Hunan 410082,China;Advanced Nano-processing Engineering Lab,Mechanical Systems Engineering,Kogakuin University,Tokyo 192-0015,Japan
Understanding on the Surfactants Engineered Morphology Evolution of Block Copolymer Particles and Their Precise Mesoporous Silica Replicas
YANG Shaobo;CAO Yuanyuan;WANG Shuqi;LI Yongsheng;SHI Jianlin-Lab of Low-Dimensional Materials Chemistry,Key Laboratory for Ultrafine Materials of Ministry of Education,Frontier Science Center of the Materials Biology and Dynamic Chemistry,School of Materials Science and Engineering,East China University of Science and Technology,Shanghai 200237,P.R.China;Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan,School of Chemistry and Chemical Engineering,Shihezi University,Shihezi 832003,P.R.China;State Key Laboratory of High Performance Ceramics and Superfine Microstructure,Shanghai Institute of Ceramics,Chinese Academy of Sciences,Shanghai 200050,P.R.China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。