首站-论文投稿智能助手
典型文献
Rapid and mass manufacturing of soft hydrogel microstructures for cell patterns assisted by 3D printing
文献摘要:
Micro-/nano-patterns on hydrogels are widely used in cell patterning.However,manufacturing molds with traditional lithog-raphy is time-consuming and expensive.In addition,the excessive demolding force can easily damage patterns since biocompatible hydrogels are ultra-soft or brittle.Here,we presented a novel method for rapid and mass fabrication of cell patterns.High-precision three-dimensional(3D)printing was used to manufacture a mold with a resolution of 2 μm,and the gelatin-based hydrogel was cured by thermal-photo-crosslinking so that the low-concentration and low-substitution-rate hydrogel could be demolded successfully.We found that pre-cooling before illumination made gelatin-based hydrogels resilient due to the partial regain of triple-helix structures.With this method,arbitrarily customized hydrogel patterns with a feature size of 6-80 μm can be fabricated stably and at low cost.When cardiomyocytes were seeded on ultra-soft hydrogels with parallel groove structures,a consistent and spontaneous beating with 216 beats per minute(BPM)could be observed,approaching the natural beating rate of rat hearts(300 BPM).Overall,this work provides a general scheme for manufacturing cell patterns which has great potential for cell ethology and tissue repair.
文献关键词:
作者姓名:
Chaofan He;Xuechun Chen;Yuan Sun;Mingjun Xie;Kang Yu;Jing He;Jinwei Lu;Qing Gao;Jing Nie;Yi Wang;Yong He
作者机构:
State Key Laboratory of Fluid Power and Mechatronic Systems,School of Mechanical Engineering,Zhejiang University,Hangzhou 310027,China;Pharmaceutical Informatics Institute,College of Pharmaceutical Sciences,Zhejiang University,Hangzhou 310058,China;Department of Orthopedic Surgery,The Second Affiliated Hospital,School of Medicine,Zhejiang University,Hangzhou 310009,China;State Key Laboratory of Component-Based Chinese Medicine,Tianjin University of Traditional Chinese Medicine,Tianjin 300072,China;Key Laboratory of Materials Processing and Mold,Zhengzhou University,Zhengzhou 450002,China;Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province,College of Mechanical Engineering,Zhejiang University,Hangzhou 310027,China;Cancer Center,Zhejiang University,Hangzhou 310058,China
引用格式:
[1]Chaofan He;Xuechun Chen;Yuan Sun;Mingjun Xie;Kang Yu;Jing He;Jinwei Lu;Qing Gao;Jing Nie;Yi Wang;Yong He-.Rapid and mass manufacturing of soft hydrogel microstructures for cell patterns assisted by 3D printing)[J].生物设计与制造(英文),2022(04):641-659
A类:
lithog,demolding,demolded,ethology
B类:
Rapid,mass,manufacturing,soft,microstructures,cell,patterns,assisted,by,printing,Micro,nano,hydrogels,are,widely,used,patterning,However,molds,traditional,raphy,consuming,expensive,In,addition,excessive,force,can,easily,damage,since,biocompatible,ultra,brittle,Here,presented,novel,method,rapid,fabrication,High,precision,three,dimensional,was,manufacture,resolution,gelatin,cured,thermal,photo,crosslinking,that,low,concentration,substitution,rate,could,successfully,We,found,cooling,before,illumination,made,resilient,due,partial,regain,triple,helix,With,this,arbitrarily,customized,feature,size,fabricated,stably,cost,When,cardiomyocytes,were,seeded,parallel,groove,consistent,spontaneous,beating,beats,per,minute,BPM,observed,approaching,natural,hearts,Overall,work,provides,general,scheme,which,has,great,potential,tissue,repair
AB值:
0.6004
相似文献
Beyond Lambertian light trapping for large-area silicon solar cells: fabrication methods
Jovan Maksimovic;Jingwen Hu;Soon Hock Ng;Tomas Katkus;Gediminas Seniutinas;Tatiana Pinedo Rivera;Michael Stuiber;Yoshiaki Nishijima;Sajeev John;Saulius Juodkazis-Optical Sciences Centre and ARC Training Centre in Surface Engineering for Advanced Materials(SEAM),School of Science,Swinburne University of Technology,Hawthorn Vic 3122,Australia;Melbourne Centre for Nanofabrication,ANFF Victoria,151 Wellington Rd.,Clayton Vic 3168 Australia;Department of Electrical and Computer Engineering,Graduate School of Engineering,Yokohama National University,79-5 Tokiwadai,Hodogaya-ku,Yokohama 240-8501,Japan;Institute of Advanced Sciences,Yokohama National University,79-5 Tokiwadai,Hodogaya-ku,Yokohama 240-8501,Japan;Department of Physics,University of Toronto,60 St.George Street,Toronto,ON,M5S 1A7,Canada;World Research Hub Initiative(WRHI),School of Materials and Chemical Technology,Tokyo Institute of Technology,2-12-1,Ookayama,Meguro-ku,Tokyo 152-8550,Japan
Terahertz structured light:nonparaxial Airy imaging using silicon diffractive optics
Rusnè lva?kevi?iūtè-Povilauskienè;Paulius Kizevi?ius;Ernestas Nacius;Domas Jokubauskis;K?stutis lkamas;Alvydas Lisauskas;Natalia Alexeeva;leva Matulaitienè;Vytautas Jukna;Sergej Orlov;Linas Minkevi?ius;Gintaras Valu?is-Department of Optoelectronics,Center for Physical Sciences and Technology,Sauletekio av.3,Vilnius 10257,Lithuania;Department of Fundamental Research,Center for Physical Sciences and Technology,Saulètekio av.3,Vilnius 10257,Lithuania;Institute of Applied Electrodynamics&Telecommunications,Vilnius University,Saulètekio av.3,Vilnius 10257,Lithuania;CENTERA Labs.,Institute of High Pressure Physics PAS,ul.Sokolowska 29/37,Warsaw 01-142,Poland;Department of Organic Chemistry,Center for Physical Sciences and Technology,Saulètekio av.3,Vilnius 10257,Lithuania;Institute of Photonics and Nanotechnology,Department of Physics,Vilnius University,Saulètekio av.3,Vilnius 10257,Lithuania
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。