首站-论文投稿智能助手
典型文献
基于改进遗传算法的路径规划问题应用
文献摘要:
信息化赋能传统物流行业的迭代升级,为解决由于汽车制造业独有的物流特点带来的运输难题,使循环取货速度提升、成本费用降低及物流车辆造成城市内部交通压力得到缓解,以汽车厂A在城市Q本地循环取货实际运输需求为基础,设计了基于改进的遗传算法用于汽车零部件运输的智能路径规划方法.利用循环物流过程中当月零部件需求量、供应商订单详情、选配运输车辆容载率、单车器具体积占比、时间窗需求等耦合性因素,使用大规模邻域搜索算法改进遗传算法,求解出应用Solomon数据算例的最优路径并于遗传算法相比较和厂A与供应商间实际运输需求的最优配送方案线路.实验结果表明,该方法在性能上具有显著优越性,数值仿真结果阐明了该方法的适用性和优化过程中的收敛情况.
文献关键词:
循环物流;时间窗需求;车辆容载率;最优配送方案
作者姓名:
辛钢;宋少忠;张慧;安毅
作者机构:
吉林工商学院工学院,长春130507;吉林工程技术师范学院数据科学与人工智能学院,长春130052;长春汽车工业高等专科学校信息技术学院,长春130013;吉林工程技术师范学院电气与信息工程学院,长春130052
引用格式:
[1]辛钢;宋少忠;张慧;安毅-.基于改进遗传算法的路径规划问题应用)[J].吉林大学学报(信息科学版),2022(06):946-953
A类:
车辆容载率,时间窗需求,最优配送方案
B类:
改进遗传算法,规划问题,信息化赋能,物流行业,迭代升级,汽车制造业,取货,成本费用,物流车辆,成城,市内,内部交通,汽车厂,运输需求,改进的遗传算法,汽车零部件,路径规划方法,循环物流,流过,当月,供应商,商订,订单,详情,选配,运输车辆,单车,耦合性,大规模邻域搜索算法,算法改进,解出,Solomon,最优路径
AB值:
0.372787
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。