首站-论文投稿智能助手
典型文献
The mechanism by which hyperbaric oxygen treatment alleviates spinal cord injury:genome-wide transcriptome analysis
文献摘要:
Accumulating studies have demonstrated that hyperbaric oxygen(HBO)treatment alleviates spinal cord injury(SCI).However,the underlying mechanism by which HBO alleviates SCI remains to be elucidated.In this study,we performed genome-wide transcriptional profiling of the spinal cord between SCI mice and mice that received HBO treatment by high-throughput RNA sequencing at 1 week after SCI.We also compared genome-wide transcriptional profiles from SCI mice and sham-operated mice.We found 76 differentially co-expressed genes in sham-operated mice,SCI mice,and HBO-treated SCI mice.Using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis,we identified the biological characteristics of these differentially expressed genes from the perspectives of cell component,biological process,and molecular function.We also found enriched functional pathways including ferroptosis,calcium signaling pathway,serotonergic synapse,hypoxia-inducible factor-1 signaling pathway,cholinergic synapse,and neuroactive ligand-receptor interaction.We performed quantitative reverse transcription-polymerase chain reaction and validated that HBO treatment decreased the expression of Hspb1(heat shock protein beta 1),Hmox1(heme oxygenase 1),Ftl1(ferritin light polypeptide 1),Tnc(tenascin C)and Igfbp3(insulin-like growth factor binding protein 3)and increased the expression of Slc5o7(solute carrier family 5 choline transporter member 7)after SCI.These results revealed the genome-wide transcriptional profile of the injured spinal cord after HBO treatment.Our findings contribute to a better understanding of the mechanism by which HBO treats SCI and may provide new targets for SCI intervention.
文献关键词:
作者姓名:
Zhen-Cheng Sun;Fang Liang;Jing Yang;Yong Hai;Qing-Jun Su;Xue-Hua Liu
作者机构:
Department of Orthopedic Surgery,Beijing Chaoyang Hospital,Capital Medical University,Beijing,China;Department of Hyperbaric Oxygen,Beijing Chaoyang Hospital,Capital Medical University,Beijing,China
引用格式:
[1]Zhen-Cheng Sun;Fang Liang;Jing Yang;Yong Hai;Qing-Jun Su;Xue-Hua Liu-.The mechanism by which hyperbaric oxygen treatment alleviates spinal cord injury:genome-wide transcriptome analysis)[J].中国神经再生研究(英文版),2022(12):2737-2742
A类:
Hspb1,Hmox1,Ftl1,Igfbp3,Slc5o7
B类:
mechanism,by,which,hyperbaric,treatment,alleviates,spinal,cord,injury,genome,wide,transcriptome,analysis,Accumulating,studies,have,demonstrated,that,HBO,SCI,However,underlying,remains,elucidated,In,this,study,performed,transcriptional,profiling,between,mice,received,high,throughput,sequencing,week,after,We,also,compared,profiles,from,sham,operated,found,differentially,expressed,genes,treated,Using,Ontology,Kyoto,Encyclopedia,Genes,Genomes,enrichment,identified,biological,characteristics,these,perspectives,cell,component,process,molecular,enriched,functional,pathways,including,ferroptosis,calcium,signaling,serotonergic,synapse,hypoxia,inducible,cholinergic,neuroactive,ligand,receptor,interaction,quantitative,reverse,polymerase,chain,reaction,validated,decreased,expression,heat,shock,protein,beta,heme,oxygenase,ferritin,light,polypeptide,Tnc,tenascin,insulin,like,growth,binding,increased,solute,carrier,family,transporter,member,These,results,revealed,injured,Our,findings,contribute,better,understanding,treats,may,provide,new,targets,intervention
AB值:
0.53544
相似文献
Spirulina platensis aqueous extracts ameliorate colonic mucosal damage and modulate gut microbiota disorder in mice with ulcerative colitis by inhibiting inflammation and oxidative stress
Jian WANG;Liqian SU;Lun ZHANG;Jiali ZENG;Qingru CHEN;Rui DENG;Ziyan WANG;Weidong KUANG;Xiaobao JIN;Shuiqing GUI;Yinghua XU;Xuemei LU-Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances,School of Life Science and Biopharmaceutics,Guangdong Pharmaceutical University,Guangzhou 510006,China;School of Pharmacy,Guangdong Pharmaceutical University,Guangzhou 510006,China;Intensive Care Unit,Shenzhen Second People's Hospital,the First Affiliated Hospital of Shenzhen University,Shenzhen 518031,China;Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products,National Institutes for Food and Drug Control,Beijing 102629,China
N6?methyladenosine modification of CENPK mRNA by ZC3H13 promotes cervical cancer stemness and chemoresistance
Xian Lin;Feng Wang;Jian Chen;Jing Liu;Yi?Bin Lin;Li Li;Chuan?Ben Chen;Qin Xu-Departments of Gynecology,Fujian Cancer Hospital and Fujian Medical University Cancer Hospital,Fujian Medical University,Fuzhou 350014,China;Department of Radiation Oncology,Fujian Cancer Hospital and Fujian Medical University Cancer Hospital,Fujian Medical University,Fuzhou 350014,China;Shenzhen Key Laboratory of Immunity and Inflammatory Diseases,Peking University Shenzhen Hospital,Shenzhen Peking University?the Hong Kong University of Science and Technology Medical Center,Shenzhen 518036,Guangdong,China;Outpatient Department,Fujian Hospital of People's Armed Police,Fujian Medical University,Fuzhou 350014,China
Spinal cord injury reprograms muscle fibroadipogenic progenitors to form heterotopic bones within muscles
Hsu-Wen Tseng;Dorothée Girard;Kylie A.Alexander;Susan M.Millard;Frédéric Torossian;Adrienne Anginot;Whitney Fleming;Jules Gueguen;Marie-Emmanuelle Goriot;Denis Clay;Beulah Jose;Bianca Nowlan;Allison R.Pettit;Marjorie Salga;Fra?ois Genêt;Marie-Carline Le Bousse-Kerdilès;Sébastien Banzet;Jean-Pierre Lévesque-Mater Research Institute—The University of Queensland,Woolloongabba,QLD,Australia;Institut de Recherche Biomédicale des Armées(IRBA),INSERM UMRS-MD,1197 Clamart,France;INSERM UMRS-MD 1197,Université de Paris-Saclay,H?pital Paul Brousse,Villejuif ,France;INSERM UMS-44,Université de Paris-Saclay,H?pital Paul Brousse,Villejuif,France;UPOH(Unité Péri Opératoire du Handicap,Perioperative Disability Unit),Physical and Rehabilitation Medicine department,Raymond-Poincaré Hospital,Assistance Publique-H?pitaux de Paris(AP-HP),Garches,France;Université de Versailles Saint Quentin en Yvelines,UFR Simone Veil-Santé,END:ICAP INSERM U1179,Montigny le Bretonneux,France
Identification of circRNA/miRNA/mRNA regulatory net-work involving(+)-catechin ameliorates diabetic nephropathy mice
Chao Chen;Dina Zhu;Shuai Zhang;Wensheng Zhang-Zhuhai Branch of State Key Laboratory of Earth Surface Processes and Resource Ecology,Advanced Institute of Natural Sciences,Beijing Normal University,Zhuhai 519087,China;Engineering Research Center of Natural Medicine,Ministry of Education,Advanced Insti-tute of Natural Sciences,Beijing Normal University,Zhuhai 519087,China;International Cooperation Laboratory of Molecular Medicine,Academy of Chinese Medical Sciences,Zhejiang Chinese Medical University,Hangzhou 310053,China;Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization,Faculty of Geographical Science,Beijing Normal University,Beijing 100875,China
Therapeutic effects of the extract of Sancao Formula,a Chinese herbal compound,on imiquimod-induced psoriasis via cysteine-rich protein 61
Wan-jun Guo;Yi Wang;Yu Deng;Lin-yan Cheng;Xin Liu;Ruo-fan Xi;Sheng-jie Zhu;Xin-yi Feng;Liang Hua;Kan Ze;Jian-yong Zhu;Dong-jie Guo;Fu-lun Li-Department of Dermatology,Yueyang Hospital of Integrated Traditional Chinese and Western Medicine,Shanghai University of Traditional Chinese Medicine,Shanghai 200437,China;School of Medicine,Chengdu University,Chengdu 610106,Sichuan Province,China;Institute of Cancer Biology and Drug Discovery,Chengdu University,Chengdu 610106,Sichuan Province,China;Clinical Laboratory Medicine Center,Yueyang Hospital of Integrated Traditional Chinese and Western Medicine,Shanghai University of Traditional Chinese Medicine,Shanghai 200437,China
Stratifin promotes renal dysfunction in ischemic and nephrotoxic AKI mouse models via enhancing RIPK3-mediated necroptosis
Fang Wang;Jia-nan Wang;Xiao-yan He;Xiao-guo Suo;Chao Li;Wei-jian Ni;Yu-ting Cai;Yuan He;Xin-yun Fang;Yu-hang Dong;Tian Xing;Ya-ru Yang;Feng Zhang;Xiang Zhong;Hong-mei Zang;Ming-ming Liu;Jun Li;Xiao-ming Meng;Juan Jin-Inflammation and Immune Mediated Diseases Laboratory of Anhui Province,Anhui Institute of Innovative Drugs,School of Pharmacy,Anhui Medical University,The Key Laboratory of Anti-inflammatory of Immune Medicines,Ministry of Education,Hefei 230032,China;Department of Pharmacy,Anhui Provincial Hospital,The First Affiliated Hospital of USTC,Division of Life Sciences and Medicine,University of Science and Technology of China,Hefei 230001,China;Hospital of Stomatology,Anhui Medical University,Key Laboratory of Oral Diseases Research of Anhui Province,Hefei 230032,China;Department of Pharmacy,Changzheng Hospital,Naval Medical University,Shanghai 200003,China;Department of Nephrology,Sichuan Academy of Medical Sciences&Sichuan Provincial People's Hospital,School of Medicine,University of Electronic Science and Technology of China,Chengdu 610072,China;School of Basic Medical Sciences,Anhui Medical University,Hefei 230032,China
Asiatic acid alleviates ischemic myocardial injury in mice by modulating mitophagy-and glycophagy-based energy metabolism
Fan Qiu;Yi Yuan;Wei Luo;Yan-shan Gong;Zhong-ming Zhang;Zhong-min Liu;Ling Gao-Translational Medical Center for Stem Cell Therapy&Institute for Regenerative Medicine,Shanghai East Hospital,Tongji University School of Medicine,Shanghai 200123,China;Department of Cardiovascular and Thoracic Surgery,Shanghai East Hospital,Tongji University School of Medicine,Shanghai 200120,China;Department of Cardiovascular and Thoracic Surgery,Affiliated Hospital of Xuzhou Medical University,Xuzhou 221006,China;Shanghai Institute of Stem Cell Research and Clinical translation,Shanghai East Hospital,Tongji University,Shanghai 200120,China;Shanghai Engineering Research Center for Stem Cell Clinical Treatment,Shanghai 200123,China
Sulforaphane ameliorates non-alcoholic fatty liver disease in mice by promoting FGF21/FGFR1 signaling pathway
Yi-kuan Wu;Zheng-nan Ren;Sheng-long Zhu;Yun-zhou Wu;Gang Wang;Hao Zhang;Wei Chen;Zhao He;Xian-long Ye;Qi-xiao Zhai-State Key Laboratory of Food Science and Technology,Jiangnan University,Wuxi 214122,China;School of Food Science and Technology,Jiangnan University,Wuxi 214122,China;School of Medicine,Jiangnan University,Wuxi 214122,China;College of Life Science,Northeast Agricultural University,Harbin 150038,China;National Engineering Research Center for Functional Food,Jiangnan University,Wuxi 214122,China;Shandong Key Laboratory of Endocrinology and Lipid Metabolism,Jinan 250021,China;School of Medicine,Shandong University,Jinan 250012,China;Ganjiang Chinese Medicine Innovation Center,Nanchang 330000,China
Transcription factor Klf9 controls bile acid reabsorption and enterohepatic circulation in mice via promoting intestinal Asbt expression
Shuang Liu;Man Liu;Meng-lin Zhang;Cui-zhe Wang;Yin-liang Zhang;Yu-jie Zhang;Chun-yuan Du;Su-fang Sheng;Wei Wang;Ya-tong Fan;Jia-ni Song;Jin-can Huang;Yue-yao Feng;Wei Qiao;Jin-long Huang;Yu-hui Li;Lu Zhou;Jun Zhang;Yong-sheng Chang-Key Laboratory of Immune Microenvironment and Disease(Ministry of Education),Tianjin Key Laboratory of Cellular Homeostasis and Disease,Department of Physiology and Pathophysiology,Tianjin Medical University,Tianjin 300052,China;Department of Basic Medicine,Shihezi University School of Medicine,Shihezi 832000,China;Key Laboratory of Biotechnology of Hubei Province,Key Laboratory of Biotechnology of Chinese Traditional Medicine,National&Local Joint Engineering Research Center of High-throughput Drug Screening Technology,Hubei University,Wuhan 430062,China;Department of Gastroenterology and Hepatology,Tianjin Medical University General Hospital,Tianjin 300052,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。