首站-论文投稿智能助手
典型文献
Growth differentiation factor 5: a neurotrophic factor with neuroprotective potential in Parkinson's disease
文献摘要:
Parkinson's disease is the most common movement disorder worldwide, affecting over 6 million people. It is an age-related disease, occurring in 1% of people over the age of 60, and 3% of the population over 80 years. The disease is characterized by the progressive loss of midbrain dopaminergic neurons from the substantia nigra, and their axons, which innervate the striatum, resulting in the characteristic motor and non-motor symptoms of Parkinson's disease. This is paralleled by the intracellular accumulation of α-synuclein in several regions of the nervous system. Current therapies are solely symptomatic and do not stop or slow disease progression. One promising disease-modifying strategy to arrest the loss of dopaminergic neurons is the targeted delivery of neurotrophic factors to the substantia nigra or striatum, to protect the remaining dopaminergic neurons of the nigrostriatal pathway. However, clinical trials of two well-established neurotrophic factors, glial cell line-derived neurotrophic factor and neurturin, have failed to meet their primary end-points. This failure is thought to be at least partly due to the downregulation by α-synuclein of Ret, the common co-receptor of glial cell line-derived neurorophic factor and neurturin. Growth/differentiation factor 5 is a member of the bone morphogenetic protein family of neurotrophic factors, that signals through the Ret-independent canonical Smad signaling pathway. Here, we review the evidence for the neurotrophic potential of growth/differentiation factor 5 in in vitro and in vivo models of Parkinson's disease. We discuss new work on growth/differentiation factor 5's mechanisms of action, as well as data showing that viral delivery of growth/differentiation factor 5 to the substantia nigra is neuroprotective in the α-synuclein rat model of Parkinson's disease. These data highlight the potential for growth/differentiation factor 5 as a disease-modifying therapy for Parkinson's disease.
文献关键词:
作者姓名:
Susan R.Goulding
作者机构:
Department of Anatomy and Neuroscience,and Cork Neuroscience Centre,University College Cork,Cork,Ireland;Department of Physiology,University College Cork,Cork,Ireland
引用格式:
[1]Susan R.Goulding-.Growth differentiation factor 5: a neurotrophic factor with neuroprotective potential in Parkinson's disease)[J].中国神经再生研究(英文版),2022(01):38-44
A类:
innervate,nigrostriatal,neurturin,neurorophic
B类:
Growth,differentiation,neurotrophic,neuroprotective,potential,Parkinson,disease,most,common,movement,disorder,worldwide,affecting,over,million,people,It,age,related,occurring,population,years,characterized,by,progressive,loss,midbrain,dopaminergic,neurons,from,substantia,nigra,their,axons,which,striatum,resulting,characteristic,motor,symptoms,This,paralleled,intracellular,accumulation,synuclein,several,regions,nervous,system,Current,therapies,are,solely,symptomatic,not,stop,slow,progression,One,promising,modifying,strategy,arrest,targeted,delivery,factors,remaining,pathway,However,clinical,trials,two,well,established,glial,line,derived,have,failed,meet,primary,points,failure,thought,least,partly,due,downregulation,Ret,receptor,member,bone,morphogenetic,protein,family,that,signals,through,independent,canonical,Smad,signaling,Here,review,evidence,growth,vitro,vivo,models,We,discuss,new,work,mechanisms,action,data,showing,viral,These,highlight,therapy
AB值:
0.479523
相似文献
Globular adiponectin-mediated vascular remodeling by affecting the secretion of adventitial-derived tumor necrosis factor-αinduced by urotensin Ⅱ
Jun LI;Limin LUO;Yonggang ZHANG;Xiao DONG;Shuyi DANG;Xiaogang GUO;Wenhui DING-Department of Cardiology,the First Affiliated Hospital,Zhejiang University School of Medicine,Hangzhou 310003,China;Division of Cardiology,Department of Internal Medicine,Taihe Hospital,Hubei University of Medicine,Shiyan 442000,China;Division of Cardiology,Department of Internal Medicine,Peking University First Hospital,Beijing 100034,China;Department of Dermatology,the First Affiliated Hospital,Zhejiang University School of Medicine,Hangzhou 310003,China;Department of Cardiovascular Diseases,the Second Affiliated Hospital,Shantou University Medical College,Shantou 515041,China
CHCHD2 maintains mitochondrial contact site and cristae organizing system stability and protects against mitochondrial dysfunction in an experimental model of Parkinson’s disease
Lu Lin;Mao Hengxu;Zhou Miaomiao;Lin Yuwan;Dai Wei;Qiu Jiewen;Xiao Yousheng;Mo Mingshu;Zhu Xiaoqin;Wu Zhuohua;Pei Zhong;Guo Wenyuan;Xu Pingyi;Chen Xiang-Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China;Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China;School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, China;Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
Alzheimer's disease:current status and perspective
Wenying Liu;Serge Gauthier;Jianping Jia-Innovation Center for Neurological Disorders and Department of Neurology,Xuanwu Hospital,Capital Medical University,National Clinical Research Center for Geriatric Diseases,Beijing 100053,China;Departments of Neurology and Neurosurgery,and Department of Psychiatry,McGill Centre for Studies in Aging,McGill University,Montreal H4H1R3,Canada;Beijing Key Laboratory of Geriatric Cognitive Disorders,Beijing 100053,China;Clinical Center for Neurodegenerative Disease and Memory Impairment,Capital Medical University,Beijing 100053,China;Center of Alzheimer's Disease,Beijing Institute of Brain Disorders,Collaborative Innovation Center for Brain Disorders,Capital Medical University,Beijing 100053,China;Key Laboratory of Neurodegenerative Diseases,Ministry of Education,Beijing 100053,China
Novel dual inhibitor for targeting PIM1 and FGFR1 kinases inhibits colorectal cancer growth in vitro and patient-derived xenografts in vivo
Fanxiang Yin;Ran Zhao;Dhilli Rao Gorja;Xiaorong Fu;Ning Lu;Hai Huang;Beibei Xu;Hanyong Chen;Jung-Hyun Shim;Kangdong Liu;Zhi Li;Kyle Vaughn Laster;Zigang Dong;Mee-Hyun Lee-Department of Pathophysiology,School of Basic Medical Sciences,Zhengzhou University,Zhengzhou 450001,China;China-US(Henan)Hormel Cancer Institute,Zhengzhou 450008,China;Translational Medical Center,the First Affiliated Hospital of Zhengzhou University,Zhengzhou 450052,China;The Hormel Institute,University of Minnesota,Austin,MN 55912,USA;Department of Biomedicine,Health&Life Convergencen Science,BK21 Four,College of Pharmacy,Mokpo National University,Jeonnam 58554,Republic of Korea;The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention,Zhengzhou 450001,China;Department of General Surgery,the Affiliated Tumor Hospital of Zhengzhou University,Zhengzhou 450008,China;College of Korean Medicine,Dongshin University,Naju 58245,Republic of Korea
Corynoxine B derivative CB6 prevents Parkinsonian toxicity in mice by inducing PIK3C3 complex-dependent autophagy
Zhou Zhu;Liang-feng Liu;Cheng-fu Su;Jia Liu;Benjamin Chun-Kit Tong;Ashok lyaswamy;Senthilkumar Krishnamoorthi;Sravan Gopalkrishnashetty Sreenivasmurthy;Xin-jie Guan;Yu-xuan Kan;Wen-jian Xie;Chen-liang Zhao;King-ho Cheung;Jia-hong Lu;Jie-qiong Tan;Hong-jie Zhang;Ju-xian Song;Min Li-Mr.&Mrs.Ko Chi-Ming Centre for Parkinson's Disease Research,School of Chinese Medicine,Hong Kong Baptist University,Hong Kong,SAR,China;School of Chinese Medicine,Hong Kong Baptist University,Hong Kong,SAR,China;institute for Research and Continuing Education,Hong Kong Baptist University,Shenzhen 518057,China;Limin Pharmaceutical Factory,Livzon Group Limited,Shaoguan 512028,China;State Key Laboratory of Quality Research in Chinese Medicine,Institute of Chinese Medical Sciences,University of Macau,Macau,SAR,China;Center for Medical Genetics and Hunan Key Laboratory of Animal Model for Human Diseases,School of Life Sciences,Central South University,Changsha 410078,China;Medical College of Acupuncture-Moxibustion and Rehabilitation,Guangzhou University of Chinese Medicine,Guangzhou 510006,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。