首站-论文投稿智能助手
典型文献
依据主成分和协整性的大坝变形奇异诊断
文献摘要:
针对常规方法对大坝变形原位监测数据中奇异成分的诊断效率较低问题,综合应用主成分分析(principal component analysis,简称PCA)和协整分析(co-integration analysis,简称CA),提出一种新方法.首先,基于PCA,构建平方预测误差(squared prediction error,简称SPE)统计量,结合假设检验,提出奇异成分辨识准则;其次,依据CA,运用拓展的迪基-福勒(augmented Dickey-Fuller,简称ADF)检验和逐步回归法,建立奇异成分似然估计模型;最后,通过工程实例分析,检验方法的有效性.结果表明:PCA、拉依达、狄克松和 t准则分别可辨识出相对误差为3.81%,7.61%,7.61%和5.08%的孤立型奇异;CA模型对斑点型奇异的估计精度最高,其次是统计模型,自回归模型最差,复相关系数分别为0.994 5,0.871 5和0.743 2.与常规方法相比,PCA-CA方法性能有较大提升,可为大坝变形奇异诊断提供有效的途径.
文献关键词:
大坝;变形原位监测;奇异诊断;主成分;协整性
作者姓名:
杨光;李姝昱;孙锦
作者机构:
华北水利水电大学水利学院 郑州,450046;河海大学水文水资源与水利工程科学国家重点实验室 南京,210098;黄河水利科学研究院 郑州,450003;华北水利水电大学测绘与地理信息学院 郑州,450046
引用格式:
[1]杨光;李姝昱;孙锦-.依据主成分和协整性的大坝变形奇异诊断)[J].振动、测试与诊断,2022(05):918-924
A类:
奇异诊断,变形原位监测,Dickey
B类:
协整性,大坝变形,常规方法,诊断效率,综合应用,principal,component,analysis,协整分析,integration,建平,预测误差,squared,prediction,error,SPE,统计量,假设检验,出奇,augmented,Fuller,ADF,逐步回归法,似然估计,工程实例,检验方法,可辨,斑点,估计精度,统计模型,自回归模型,复相关系数
AB值:
0.33715
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。