首站-论文投稿智能助手
典型文献
The X-structure/mechanism approach to beneficial nonlinear design in engineering
文献摘要:
Nonlinearity can take an important and critical role in engineering systems,and thus cannot be simply ignored in structural design,dynamic response analysis,and parameter selection.A key issue is how to analyze and design potential nonlinearities in-troduced to or inherent in a system under study.This is a must-do task in many practical applications involving vibration control,energy harvesting,sensor systems,robotic tech-nology,etc.This paper presents an up-to-date review on a cutting-edge method for nonlinearity manipulation and employment developed in recent several years,named as the X-structure/mechanism approach.The method is inspired from animal leg/limb skele-tons,and can provide passive low-cost high-efficiency adjustable and beneficial nonlinear stiffness(high static&ultra-low dynamic),nonlinear damping(dependent on resonant frequency and/or relative vibration displacement),and nonlinear inertia(low static&high dynamic)individually or simultaneously.The X-structure/mechanism is a generic and basic structure/mechanism,representing a class of structures/mechanisms which can achieve beneficial geometric nonlinearity during structural deflection or mechanism mo-tion,can be flexibly realized through commonly-used mechanical components,and have many different forms(with a basic unit taking a shape like X/K/Z/S/V,quadrilateral,di-amond,polygon,etc.).Importantly,all variant structures/mechanisms may share similar geometric nonlinearities and thus exhibit similar nonlinear stiffness/damping properties in vibration.Moreover,they are generally flexible in design and easy to implement.This paper systematically reviews the research background,motivation,essential bio-inspired ideas,advantages of this novel method,the beneficial nonlinear properties in stiffness,damping,and inertia,and the potential applications,and ends with some remarks and conclusions.
文献关键词:
作者姓名:
Xingjian JING
作者机构:
Department of Mechanical Engineering,City University of Hong Kong,Kowloon Tong,Hong Kong,China
引用格式:
[1]Xingjian JING-.The X-structure/mechanism approach to beneficial nonlinear design in engineering)[J].应用数学和力学(英文版),2022(07):979-1000
A类:
amond
B类:
approach,beneficial,design,engineering,Nonlinearity,take,important,critical,role,systems,thus,cannot,simply,ignored,structural,dynamic,response,analysis,parameter,selection,key,issue,how,analyze,potential,nonlinearities,troduced,inherent,under,study,This,must,do,task,many,practical,applications,involving,vibration,control,energy,harvesting,sensor,robotic,tech,nology,etc,paper,presents,up,date,cutting,edge,method,nonlinearity,manipulation,employment,developed,recent,several,years,named,inspired,from,animal,leg,limb,skele,tons,provide,passive,low,cost,high,efficiency,adjustable,stiffness,static,ultra,damping,dependent,resonant,frequency,relative,displacement,inertia,individually,simultaneously,generic,basic,representing,class,structures,mechanisms,which,achieve,geometric,during,deflection,flexibly,realized,through,commonly,used,mechanical,components,have,different,forms,unit,taking,shape,like,quadrilateral,polygon,Importantly,variant,may,share,similar,exhibit,properties,Moreover,they,generally,flexible,easy,implement,systematically,reviews,research,background,motivation,essential,bio,ideas,advantages,this,novel,ends,some,remarks,conclusions
AB值:
0.600985
相似文献
Highly transmitted silver nanowires-SWCNTs conductive flexible film by nested density structure and aluminum-doped zinc oxide capping layer for flexible amorphous silicon solar cells
Shunliang Gao;Xiaohui Zhao;Qi Fu;Tianchi Zhang;Jun Zhu;Fuhua Hou;Jian Ni;Chengjun Zhu;Tiantian Li;Yanlai Wang;Vignesh Murugadoss;Gaber A.M.Mersal;Mohamed M.Ibrahim;Zeinhom M.El-Bahy;Mina Huang;Zhanhu Guo-The Key Laboratory of Semiconductor Photovoltaic Technology at Universities of Inner Mongolia Autonomous Region,College of Physical Science and Technology,Inner Mongolia University,Hohhot 010021,China;Department of Electronic Science and Technology,School of Electronic Information and Optical Engineering,Nankai University,Tianjin 300350,China;Advanced Materials Division,Engineered Multifunctional Composites(EMC)Nanotech LLC,Knoxville,TN 37934,United States;Integrated Composites Laboratory(ICL),Department of Chemical and Bimolecular Engineering,University of Tennessee,Knoxville,TN 37996,United States;Department of Chemistry,College of Science,Taif University,P.O.Box 11099,Taif 21944,Saudi Arabia;Department of Chemistry,Faculty of Science,Al-Azhar University,Nasr City 11884,Cairo,Egypt;College of Materials Science and Engineering,Taiyuan University of Science and Technology,Taiyuan 030024,China
Progress in ceramic materials and structure design toward advanced thermal barrier coatings
Zhi-Yuan WEI;Guo-Hui MENG;Lin CHEN;Guang-Rong LI;Mei-Jun LIU;Wei-Xu ZHANG;Li-Na ZHAO;Qiang ZHANG;Xiao-Dong ZHANG;Chun-Lei WAN;Zhi-Xue QU;Jing FENG;Ling LIU;Hui DONG;Ze-Bin BAO;Xiao-Feng ZHAO;Xiao-Feng ZHANG;Lei GUO;Liang WANG;Bo CHENG;Wei-Wei ZHANG;Peng-Yun XU;Guan-Jun YANG;Hong-Neng CAI;Hong CUI;You WANG;Fu-Xing YE;Zhuang MA;Wei PAN;Min LIU;Ke-Song ZHOU;Chang-Jiu LI-State Key Laboratory for Mechanical Behavior of Materials,School of Materials Science and Engineering,Xi'an Jiaotong University,Xi'an 710049,China;State Key Laboratory for Strength and Vibration of Mechanical Structures,Department of Engineering Mechanics,School of Aerospace Engineering,Xi'an Jiaotong University,Xi'an 710049,China;Xi'an Aerospace Composite Research Institute,Xi'an 710025,China;AECC Beijing Institute of Aeronautical Materials,Beijing 100095,China;School of Materials Science and Engineering,Harbin Institute of Technology,Harbin 150001,China;State Key Laboratory of New Ceramics&Fine Processing,School of Materials Science and Engineering,Tsinghua University,Beijing 100084,China;Faculty of Materials and Manufacturing,Key Laboratory of Advanced Functional Materials,Education Ministry of China,Faculty of Materials and Manufacturing,Beijing University of Technology,Beijing 100124,China;Faculty of Materials Science and Engineering,Kunming University of Science and Technology,Kunming 650093,China;School of Materials Science and Engineering,Beijing Institute of Technology,Beijing 100081,China;Xi'an Key Laboratory of High Performance Oil and Gas Field Materials,School of Materials Science and Engineering,Xi'an Shiyou University,Xi'an 710065,China;Shi-Changxu Innovation Center for Advanced Materials,Institute of Metal Research,Chinese Academy of Sciences,Shenyang 110016,China;Shanghai Key Laboratory of Advanced High-temperature Materials and Precision Forming,Shanghai Jiao Tong University,Shanghai 200240,China;National Engineering Laboratory for Modern Materials Surface Engineering Technology,the Key Lab of Guangdong for Modern Surface Engineering Technology,Institute of New Materials,Guangdong Academy of Sciences,Guangzhou 510650,China;School of Materials Science and Engineering,Tianjin University,Tianjin 300072,China;Integrated Computational Materials Research Centre,Shanghai Institute of Ceramics,Chinese Academy of Sciences,Shanghai 201899,China;State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metal,Lanzhou University of Technology,Lanzhou 730050,China;School of Materials Science and Engineering,Chang'an University,Xi'an 710064,China;Department of Mechanical and Electrical Engineering,Ocean University of China,Qingdao 266100,China
Fiber-reinforced composites in milling and grinding:machining bottlenecks and advanced strategies
Teng GAO;Yanbin ZHANG;Changhe LI;Yiqi WANG;Yun CHEN;Qinglong AN;Song ZHANG;Hao Nan LI;Huajun CAO;Hafiz Muhammad ALI;Zongming ZHOU;Shubham SHARMA-School of Mechanical and Automotive Engineering,Qingdao University of Technology,Qingdao 266520,China;School of Mechanical Engineering,Dalian University of Technology,Dalian 116024,China;Chengdu Tool Research Institute Co.,Ltd.,Chengdu 610500,China;School of Mechanical Engineering,Shanghai Jiao Tong University,Shanghai 200240,China;School of Mechanical Engineering,Shandong University,Jinan 250061,China;School of Aerospace,University of Nottingham Ningbo China,Ningbo 315100,China;School of Mechanical Engineering,Chongqing University,Chongqing 400044,China;Mechanical Engineering Department,King Fahd University of Petroleum and Minerals,Dhahran 31261,Saudi Arabia;Hanergy(Qingdao)Lubrication Technology Co.,Ltd.,Qingdao 266100,China;Department of Mechanical Engineering,IK Gujral Punjab Technical University,Punjab 144603,India
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。