典型文献
基于图卷积神经网络的图书推荐方法研究
文献摘要:
[目的/意义]用户与项目的交互历史中包含大量的语义信息,现有的协同过滤方法无法捕获其中的信息,将具有良好特征表示能力的图卷积神经网络引入图书推荐领域.[方法/过程]根据交互历史构建读者-图书二部图,搭建图卷积神经网络,通过连续的卷积层捕获二部图的高阶连通性来得到读者的邻域偏好信息,在预测层对邻域信息聚合并开展预测.[结果/结论]将提出的方法与对比方法在豆瓣图书数据集上进行实验,结果表明所提出的基于图卷积神经网络的图书推荐方法在召回率和归一化折损累计增益两项指标上均取得更好的表现.
文献关键词:
图卷积神经网络;推荐系统;邻域聚合
中图分类号:
作者姓名:
陈帜;张文德;刘田
作者机构:
福州大学信息管理研究所 福建福州 350108;福州大学图书馆 福建福州 350108;福建农林大学图书馆 福建福州 350002
文献出处:
引用格式:
[1]陈帜;张文德;刘田-.基于图卷积神经网络的图书推荐方法研究)[J].情报探索,2022(10):1-5
A类:
B类:
图卷积神经网络,图书推荐,推荐方法,语义信息,协同过滤,过滤方法,特征表示,示能,历史构建,二部图,建图,卷积层,高阶连通性,来得,偏好信息,邻域信息,信息聚合,比方,豆瓣,召回率,折损,推荐系统,邻域聚合
AB值:
0.330613
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。