典型文献
基于高阶隐半马尔科夫模型的设备剩余寿命预测
文献摘要:
针对设备剩余寿命预测误差较大的问题,提出一种基于高阶隐半马尔科夫模型(HOHSMM)的剩余寿命预测模型.首先基于隐半马尔科夫模型,建立了HOHSMM,提出一种基于排列的HOHSMM降阶方法和复合节点机制,并相应地改进状态转移矩阵和观测矩阵,使得高阶模型转化为对应的一阶模型,将更多的节点依赖关系信息储存在待估计参数组中.其次,采用智能优化算法群代替EM算法,对模型进行参数估计以及结构优化,实现了智能优化算法对高阶模型拓扑结构的简化.再次,定义并推导了高阶模型中的状态驻留变量,运用基于多项式拟合的预测方法实现了在先验分布未知情况下的设备剩余寿命预测.最后,通过美国卡特彼勒公司液压泵数据集对所提框架进行了验证,结果表明,基于高阶隐半马尔科夫模型的设备剩余寿命预测方法是更加有效的.
文献关键词:
高阶隐半马尔科夫模型;复合节点;模型降阶;状态驻留;多项式拟合;剩余寿命预测
中图分类号:
作者姓名:
刘文溢;刘勤明;周林森
作者机构:
上海理工大学管理学院,上海 200093
文献出处:
引用格式:
[1]刘文溢;刘勤明;周林森-.基于高阶隐半马尔科夫模型的设备剩余寿命预测)[J].计算机集成制造系统,2022(08):2387-2398
A类:
高阶隐半马尔科夫模型,HOHSMM,复合节点,状态驻留
B类:
预测误差,剩余寿命预测模型,降阶方法,节点机,状态转移矩阵,矩阵和,观测矩阵,高阶模型,节点依赖,依赖关系,数组,智能优化算法,EM,参数估计,拓扑结构,多项式拟合,先验分布,卡特彼勒,液压泵,寿命预测方法,模型降阶
AB值:
0.189978
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。