典型文献
基于核扩展混合块字典的单样本人脸识别研究
文献摘要:
稀疏表示分类(sparse representation-based classification,SRC)在样本数量充足下的人脸识别中具有较好的识别效果.然而由于基本字典缺乏判别性同时过度依赖于字典中每类样本的原子数目,稀疏表示分类在真实情况下的单样本(每类样本只有一张训练样本)人脸识别任务中缺乏鲁棒性.针对以上问题,该文提出了基于核扩展混合块字典的单样本人脸识别方法.首先,对样本进行分块处理,分别对分块图像进行核判别分析(kernel discriminant analysis,KDA)投影降维,提取图像的局部特征信息构成更具判别性的基本块字典;然后,为经过KDA投影之后的分块样本分别构建遮挡字典和类内差异字典来描述样本中的大面积连续遮挡以及光照、表情等类内差异信息,将遮挡字典和类内差异字典共同组合成混合块字典,使混合块字典能够更好地描述测试样本中不同类型的差异信息;最后,将测试样本表示为基本块字典和混合块字典的稀疏线性组合,根据重构残差进行分类识别,从而实现真实情况下的单样本人脸识别.在标准人脸库CAS-PEAL,AR以及真实人脸库LFW和PubFig上的实验结果表明,该方法与其他方法相比有较好的结果.
文献关键词:
稀疏表示分类;核判别分析;人脸识别;混合块字典;单样本
中图分类号:
作者姓名:
马杲东;吕非;童莹;曹雪虹
作者机构:
南京邮电大学 通信与信息工程学院,江苏 南京 210003;南瑞集团有限公司,江苏 南京 211106;南京工程学院 信息与通信工程学院,江苏 南京 211167
文献出处:
引用格式:
[1]马杲东;吕非;童莹;曹雪虹-.基于核扩展混合块字典的单样本人脸识别研究)[J].计算机技术与发展,2022(01):104-110,116
A类:
混合块字典,核判别分析,KDA,PEAL,PubFig
B类:
单样本,人脸识别,稀疏表示分类,sparse,representation,classification,SRC,样本数量,足下,本字,判别性,每类,原子数,真实情况,训练样本,分块,块处理,块图,kernel,discriminant,analysis,投影降维,局部特征,特征信息,基本块,遮挡,类内差异,表情,组合成,本表,线性组合,分类识别,CAS,LFW,其他方法
AB值:
0.271027
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。