FAILED
首站-论文投稿智能助手
典型文献
基于相关子空间的扩展隔离森林离群检测算法
文献摘要:
扩展隔离森林离群检测作为一种集成离群检测方法,可选取随机斜率的超平面,具有将离群数据与正常数据对象快速分离,时间复杂度较低等优点,但隔离树超平面选取在数据集密集区域或含有无关维度数据区域时,严重影响了其离群检测的效果.采用相关子空间思想和方法,提出了一种扩展隔离森林离群检测算法.该算法利用高斯混合模型确定数据对象的相关子空间,从而保证了能够在稀疏数据区域中选取隔离树的切割超平面;隔离树分枝分割优先在稀疏数据区域中,选择隔离树超平面的随机截距点,可快速地将离群数据对象从稀疏数据区域中隔离出来,从而避免了在超平面的随机斜率选取时无关属性维度的干扰;将每个数据对象在各隔离树上的平均路径长度归一化后作为离群得分,并选取离群得分最大的若干个数据对象作为离群数据;在UCI数据集上通过实验验证了该算法的有效性,以及抽样数、隔离树个数和近邻数参数对其离群检测效果的影响.
文献关键词:
离群检测;扩展隔离森林;相关子空间;高斯混合模型;稀疏数据区域
作者姓名:
刘佳;朱鹏云;荀亚玲
作者机构:
太原科技大学 计算机科学与技术学院,山西 太原 030024
引用格式:
[1]刘佳;朱鹏云;荀亚玲-.基于相关子空间的扩展隔离森林离群检测算法)[J].计算机技术与发展,2022(10):26-33,40
A类:
扩展隔离森林,稀疏数据区域
B类:
相关子空间,离群检测,检测算法,随机斜率,超平面,离群数据,数据对象,快速分离,时间复杂度,密集区域,空间思想,法利,高斯混合模型,模型确定,分枝,随机截距,树上,平均路径长度,若干个,UCI,近邻,检测效果
AB值:
0.169362
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。