典型文献
建筑物形状特征分析表达与自适应化简方法
文献摘要:
建筑物化简是地图制图领域关注的热点问题之一.集成不同算法构建形状特征自适应的化简模型是应对建筑物多样化形态的有效策略,但当前相关研究主要从局部结构模式或化简结果评价展开,缺乏对形状结构的整体分析视角和深层次认知.本文提出一种深度学习支持下的形状自适应建筑物化简方法.首先,利用图卷积自编码网络对建筑物形状进行深度认知,提取隐含在边界节点分布中的形状特征并进行编码表达;然后,通过监督学习方法建立形状编码与化简算法之间的映射关系,从而实现依据输入建筑物的形状特征选择适宜化简算法的自适应机制.试验表明,本文方法的化简结果在位置、方向、面积和形状保持指标上总体优于单一算法,具备较好的理论与应用价值.
文献关键词:
建筑物化简;形状表达;自适应化简;图卷积编码器
中图分类号:
作者姓名:
晏雄锋;袁拓;杨敏;孔博;刘鹏程
作者机构:
同济大学测绘与地理信息学院,上海200092;武汉大学资源与环境科学学院,湖北武汉430079;华中师范大学城市与环境科学学院,湖北武汉430079
文献出处:
引用格式:
[1]晏雄锋;袁拓;杨敏;孔博;刘鹏程-.建筑物形状特征分析表达与自适应化简方法)[J].测绘学报,2022(02):269-278
A类:
自适应化简,建筑物化简,形状表达
B类:
形状特征,地图制图,特征自适应,有效策略,局部结构,结构模式,结果评价,整体分析视角,学习支持,卷积自编码网络,深度认知,边界节点,编码表,监督学习,形状编码,简算,映射关系,特征选择,自适应机制,在位,一算,理论与应用,图卷积编码器
AB值:
0.266825
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。