首站-论文投稿智能助手
典型文献
基于局部梯度和二进制模式的时间序列分类算法
文献摘要:
时间序列分类问题是时间序列数据挖掘中的一项重要任务, 近些年受到了越来越广泛的关注. 该问题的一个重要组成部分就是时间序列间的相似性度量. 在众多相似性度量算法中, 动态时间规整是一种非常有效的算法,目前已经被广泛应用到视频、音频、手写体识别以及生物信息处理等众多领域. 动态时间规整本质上是一种在边界及时间一致性约束下的点对点的匹配算法, 能够获得两条序列间的全局最优匹配. 但该算法存在一个明显的不足, 即不一定能实现序列间的局部合理匹配. 具体的讲, 就是具有完全不同局部结构信息的时间点有可能被动态时间规整算法错误匹配. 为了解决这个问题, 提出了一种改进的基于局部梯度和二进制模式的动态时间规整算法LGBDTW (local gradient and binary pattern based dynamic time warping), 通过考虑时间序列点的局部结构信息来强化传统动态时间规整算法. 所提算法虽然实质上是一种动态时间规整算法, 但它通过考虑序列点的局部梯度和二进制模式值来进行相似性加权度量, 有效避免了具有相异局部结构的点匹配. 为了进行全面比较, 将所提出的算法应用到了最近邻分类算法的相似性度量中, 并在多个UCR时间序列数据集上进行了测试. 实验结果表明, 所提出的方法能有效提高时间序列分类的准确率. 此外, 实例分析验证了所提出算法的可解释性.
文献关键词:
动态时间规整;时间序列相似性;数据挖掘;时间序列分类
作者姓名:
郝石磊;王志海;刘海洋
作者机构:
北京交通大学 计算机与信息技术学院, 北京 100044;交通数据分析与挖掘北京市重点实验室(北京交通大学), 北京 100044
文献出处:
引用格式:
[1]郝石磊;王志海;刘海洋-.基于局部梯度和二进制模式的时间序列分类算法)[J].软件学报,2022(05):1817-1832
A类:
LGBDTW
B类:
局部梯度,二进制,时间序列分类,分类问题,时间序列数据,相似性度量,量算,音频,手写体,信息处理,整本,时间一致性,一致性约束,点对点,匹配算法,全局最优,定能,局部结构,结构信息,动态时间规整算法,误匹配,local,gradient,binary,pattern,dynamic,warping,相异,算法应用,最近邻分类算法,UCR,分析验证,可解释性,时间序列相似性
AB值:
0.287502
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。