首站-论文投稿智能助手
典型文献
Post-treatment by an ionic tetrabutylammonium hexafluorophosphate for improved efficiency and stability of perovskite solar cells
文献摘要:
Interface engineering is an effective way to improve efficiency and long-term stability of perovskite solar cells (PSCs).Herein,an ionic compound tetrabutylammonium hexafluorophosphate (TP6) is adopted to passivate surface defects of the perovskite film.It is found that TP6 effectively reduced the surface defects,especially at the grain boundaries where the defects are abundant.Meanwhile,the exposed long alkyl chains and fluorine atoms in the TP6 enhanced the moisture stability of the perovskite film due to its strong hydrophobicity.In addition,the driving force of charge carrier separation and transport is increased by enlarged built-in potential.Consequently,the power conversion efficiency (PCE) of PSCs is significantly improved from 20.59% to 22.41% by increased open-circuit vcltage (Voc) and fill factor(FF).The unencapsulated device with TP6 treatment exhibits better stability than the control device,and the PCE retains ~ 80% of its initial PCE after 30 days under 15%-25% relative humidity in storage,while the PCE of the control device declines by more than 50%.
文献关键词:
作者姓名:
Chaoqun Zhang;Xiaodong Ren;Xilai He;Yunxia Zhang;Yucheng Liu;Jiangshan Feng;Fei Gao;Ningyi Yuan;Jianning Ding;Shengzhong (Frank) Liu
作者机构:
Key Laboratory of Applied Surface and Colloid Chemistry,Ministry of Education,Shaanxi Key Laboratory for Advanced Energy Devices,Shaanxi Engineering Lab for Advanced Energy Technology,School of Materials Science and Engineering,Shaanxi Normal University,Xi'an 710119,Shaanxi,China;School of Materials Science and Engineering,Jiangsu Collaborative Innovation Center for Photovoltaic Science and Engineering,Jiangsu Province Cultivation base for State Key Laboratory of Photovoltaic Science and Technology,Changzhou University,Changzhou 213164,Jiangsu,China;Micro/Nano Science and Technology Center,Jiangsu University,Zhenjiang 212013,Jiangsu,China;Dalian National Laboratory for Clean Energy,iChEM,Dalian Institute of Chemical Physics,Chinese Academy of Sciences,Dalian 116023,Liaoning,China;University of the Chinese Academy of Sciences,Beijing 100039,China
文献出处:
引用格式:
[1]Chaoqun Zhang;Xiaodong Ren;Xilai He;Yunxia Zhang;Yucheng Liu;Jiangshan Feng;Fei Gao;Ningyi Yuan;Jianning Ding;Shengzhong (Frank) Liu-.Post-treatment by an ionic tetrabutylammonium hexafluorophosphate for improved efficiency and stability of perovskite solar cells)[J].能源化学,2022(01):8-15
A类:
tetrabutylammonium,hexafluorophosphate,TP6,vcltage
B类:
Post,treatment,by,ionic,improved,efficiency,stability,perovskite,solar,cells,Interface,engineering,way,long,term,PSCs,Herein,compound,adopted,passivate,surface,defects,film,It,found,that,effectively,reduced,especially,grain,boundaries,where,are,abundant,Meanwhile,exposed,alkyl,chains,fluorine,atoms,enhanced,moisture,due,strong,hydrophobicity,addition,driving,force,charge,carrier,separation,transport,increased,enlarged,built,potential,Consequently,power,conversion,PCE,significantly,from,open,circuit,Voc,fill,FF,unencapsulated,device,exhibits,better,than,control,retains,initial,after,days,under,relative,humidity,storage,declines,more
AB值:
0.522458
相似文献
Highly transmitted silver nanowires-SWCNTs conductive flexible film by nested density structure and aluminum-doped zinc oxide capping layer for flexible amorphous silicon solar cells
Shunliang Gao;Xiaohui Zhao;Qi Fu;Tianchi Zhang;Jun Zhu;Fuhua Hou;Jian Ni;Chengjun Zhu;Tiantian Li;Yanlai Wang;Vignesh Murugadoss;Gaber A.M.Mersal;Mohamed M.Ibrahim;Zeinhom M.El-Bahy;Mina Huang;Zhanhu Guo-The Key Laboratory of Semiconductor Photovoltaic Technology at Universities of Inner Mongolia Autonomous Region,College of Physical Science and Technology,Inner Mongolia University,Hohhot 010021,China;Department of Electronic Science and Technology,School of Electronic Information and Optical Engineering,Nankai University,Tianjin 300350,China;Advanced Materials Division,Engineered Multifunctional Composites(EMC)Nanotech LLC,Knoxville,TN 37934,United States;Integrated Composites Laboratory(ICL),Department of Chemical and Bimolecular Engineering,University of Tennessee,Knoxville,TN 37996,United States;Department of Chemistry,College of Science,Taif University,P.O.Box 11099,Taif 21944,Saudi Arabia;Department of Chemistry,Faculty of Science,Al-Azhar University,Nasr City 11884,Cairo,Egypt;College of Materials Science and Engineering,Taiyuan University of Science and Technology,Taiyuan 030024,China
Heteroheptacene-based acceptors with thieno[3,2-b]pyrrrole yield high-performance polymer solar cells
Zhenghui Luo;Ruijie Mao;Jianwei Yu;Heng Liu;Tao Liu;Fan Ni;Jiahao Hu;Yang Zou;Anping Zeng;Chun-Jen Su;U-Ser Jeng;Xinhui Lu;Feng Gao;Chuluo Yang;He Yan-Shenzhen Key Laboratory of Polymer Science and Technology,College of Materials Science and Engineering,Shenzhen University,Shenzhen 518060,China;Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration&Reconstruction,Hong Kong University of Science and Technology(HKUST),Hong Kong,China;Hong Kong University of Science and Technology-Shenzhen Research Institute,Shenzhen 518057,China;Department of Physics,Chemistry and Biology(IFM),Link?ping University,Link?ping SE-58183,Sweden;Department of Physics,Chinese University of Hong Kong,Hong Kong,China;Synchrotron Radiation Research Center,Hsinchu Science Park,Hsinchu 30076,China;Department of Chemical Engineering,Tsing Hua University,Hsinchu 30013,China;Hong Kong University of Science and Technology(HKUST)Light-Emitting Diode and Flat Panel Display Technology Research&Development Center,Foshan 526040,China;Hong Kong University of Science and Technology(HKUST)Foshan Research Institute for Smart Manufacturing,Hong Kong,China
Organic-semiconductor-assisted dielectric screening effect for stable and efficient perovskite solar cells
Haiyang Chen;Qinrong Cheng;Heng Liu;Shuang Cheng;Shuhui Wang;Weijie Chen;Yunxiu Shen;Xinqi Li;Haidi Yang;Heyi Yang;Jiachen Xi;Ziyuan Chen;Xinhui Lu;Hongzhen Lin;Yaowen Li;Yongfang Li-Laboratory of Advanced Optoelectronic Materials,Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices,College of Chemistry,Chemical Engineering and Materials Science,Soochow University,Suzhou 215123,China;Department of Physics,Chinese University of Hong Kong,Hong Kong 999077,China;i-Lab,Suzhou Institute of Nano-Tech and Nano-Bionics,Chinese Academy of Sciences,Suzhou 215123,China;State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials,Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application,Soochow University,Suzhou 215123,China;Beijing National Laboratory for Molecular Sciences,Institute of Chemistry,Chinese Academy of Sciences,Beijing 100190,China
Manipulate energy transport via fluorinated spacers towards record-efficiency 2D Dion-Jacobson CsPbI3 solar cells
Yutian Lei;Zhenhua Li;Haoxu Wang;Qian Wang;Guoqiang Peng;Youkui Xu;Haihua Zhang;Gang Wang;Liming Ding;Zhiwen Jin-School of Physical Science and Technology&Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education,Lanzhou University,Lanzhou 730000,China;School of Physical Science and Technology&Lanzhou Center for Theoretical Physics&Key Laboratory of Theoretical Physics of Gansu Province,Lanzhou University,Lanzhou 730000,China;Delft University of Technology,Photovoltaic Materials and Devices Group,Delft 2628CD,the Netherlands;Institute of Molecular Plus,Tianjin University,Tianjin 300072,China;Department of Microelectronic Science and Engineering,School of Physical Science and Technology,Ningbo University,Ningbo 315211,China;Key Laboratory of Nanosystem and Hierarchical Fabrication,National Center for Nanoscience and Technology,Beijing 100190,China
Low-cost polymer acceptors with noncovalently fused-ring backbones for efficient all-polymer solar cells
Xiaobin Gu;Yanan Wei;Xingzheng Liu;Na Yu;Laiyang Li;Ziyang Han;Jinhua Gao;Congqi Li;Zhixiang Wei;Zheng Tang;Xin Zhang;Hui Huang-College of Materials Science and Opto-Electronic Technology,Center of Materials Science and Optoelectronics Engineering,CAS Center for Excellence in Topological Quantum Computation,CAS Key Laboratory of Vacuum Physics,University of Chinese Academy of Sciences,Beijing 100049,China;Center for Advanced Low-dimension Materials,State Key Laboratory for Modification of Chemical Fibers and Polymer Materials,College of Materials Science and Engineering,Donghua University,Shanghai 201620,China;CAS Key Laboratory of Nanosystem and Hierarchical Fabrication,CAS Center for Excellence in Nanoscience,National Center for Nanoscience and Technology,Beijing 100190,China
Lowing the energy loss of organic solar cells by molecular packing engineering via multiple molecular conjugation extension
Hongbin Chen;Yalu Zou;Huazhe Liang;Tengfei He;Xiaoyun Xu;Yunxin Zhang;Zaifei Ma;Jing Wang;Mingtao Zhang;Quanwen Li;Chenxi Li;Guankui Long;Xiangjian Wan;Zhaoyang Yao;Yongsheng Chen-State Key Laboratory and Institute of Elemento-Organic Chemistry,Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials,Renewable Energy Conversion and Storage Center(RECAST),College of Chemistry,Nankai University,Tianjin 300071,China;School of Materials Science and Engineering,National Institute for Advanced Materials,Renewable Energy Conversion and Storage Center(RECAST),Nankai University,Tianjin 300350,China;State Key Laboratory for Modification of Chemical Fibers and Polymer Materials,Center for Advanced Low-dimension Materials,College of Materials Science and Engineering,Donghua University,Shanghai 201620,China;School of Materials Science&Engineering,Tianjin University of Technology,Tianjin 300384,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。