首站-论文投稿智能助手
典型文献
Hydrophobic long alkyl chain organic cations induced 2D/3D heterojunction for efficient and stable perovskite solar cells
文献摘要:
Designing post-formed two-dimensional(2D)perovskite on the surface of three-dimensional(3D)per-ovskite with matched energy levels and high stability is crucial for improving the performance and sta-bility of perovskite solar cells(PSCs).Herein,a long alkyl chain dodecylammonium bromide(DABr)was applied to react with excessive lead iodide(PbI2)on the grain boundary of metal halide perovskite pref-erentially,forming DA2PbI4(n=1)to constitute a clear 2D/3D heterojunction.The existence of hetero-junction increases the intensity of the built-in electric field of the device to enhance carrier separation and extraction,and the amino group of dodecylammonium cation passivates defects,which jointly con-tribute to the improvement of the power conversion efficiency(PCE)from 20.35 to 21.81%.The long alkyl chain endows the 2D perovskite with good hydrophobic properties,improving the humidity and thermal stability of the device.The unencapsulated device can maintain 64%of its initial efficiency after 1065 h storage in ambient air.
文献关键词:
作者姓名:
Xiang He;Min Wang;Fengren Cao;Wei Tian;Liang Li
作者机构:
School of Physical Science and Technology,Center for Energy Conversion Materials and Physics,Jiangsu Key Laboratory of Thin Films,Soochow University,Suzhou 215006,China
引用格式:
[1]Xiang He;Min Wang;Fengren Cao;Wei Tian;Liang Li-.Hydrophobic long alkyl chain organic cations induced 2D/3D heterojunction for efficient and stable perovskite solar cells)[J].材料科学技术(英文版),2022(29):243-251
A类:
dodecylammonium,DABr,erentially,DA2PbI4
B类:
Hydrophobic,long,alkyl,chain,organic,cations,induced,2D,heterojunction,efficient,stable,perovskite,solar,cells,Designing,post,formed,two,dimensional,surface,three,matched,energy,levels,high,stability,crucial,improving,performance,PSCs,Herein,bromide,was,applied,react,excessive,lead,iodide,PbI2,grain,boundary,metal,halide,pref,forming,constitute,clear,existence,increases,intensity,built,electric,field,device,enhance,carrier,separation,extraction,amino,group,passivates,defects,which,jointly,tribute,improvement,power,conversion,efficiency,PCE,from,endows,good,hydrophobic,properties,humidity,thermal,unencapsulated,can,maintain,its,initial,after,storage,ambient,air
AB值:
0.581831
相似文献
Manipulate energy transport via fluorinated spacers towards record-efficiency 2D Dion-Jacobson CsPbI3 solar cells
Yutian Lei;Zhenhua Li;Haoxu Wang;Qian Wang;Guoqiang Peng;Youkui Xu;Haihua Zhang;Gang Wang;Liming Ding;Zhiwen Jin-School of Physical Science and Technology&Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education,Lanzhou University,Lanzhou 730000,China;School of Physical Science and Technology&Lanzhou Center for Theoretical Physics&Key Laboratory of Theoretical Physics of Gansu Province,Lanzhou University,Lanzhou 730000,China;Delft University of Technology,Photovoltaic Materials and Devices Group,Delft 2628CD,the Netherlands;Institute of Molecular Plus,Tianjin University,Tianjin 300072,China;Department of Microelectronic Science and Engineering,School of Physical Science and Technology,Ningbo University,Ningbo 315211,China;Key Laboratory of Nanosystem and Hierarchical Fabrication,National Center for Nanoscience and Technology,Beijing 100190,China
Post-treatment by an ionic tetrabutylammonium hexafluorophosphate for improved efficiency and stability of perovskite solar cells
Chaoqun Zhang;Xiaodong Ren;Xilai He;Yunxia Zhang;Yucheng Liu;Jiangshan Feng;Fei Gao;Ningyi Yuan;Jianning Ding;Shengzhong (Frank) Liu-Key Laboratory of Applied Surface and Colloid Chemistry,Ministry of Education,Shaanxi Key Laboratory for Advanced Energy Devices,Shaanxi Engineering Lab for Advanced Energy Technology,School of Materials Science and Engineering,Shaanxi Normal University,Xi'an 710119,Shaanxi,China;School of Materials Science and Engineering,Jiangsu Collaborative Innovation Center for Photovoltaic Science and Engineering,Jiangsu Province Cultivation base for State Key Laboratory of Photovoltaic Science and Technology,Changzhou University,Changzhou 213164,Jiangsu,China;Micro/Nano Science and Technology Center,Jiangsu University,Zhenjiang 212013,Jiangsu,China;Dalian National Laboratory for Clean Energy,iChEM,Dalian Institute of Chemical Physics,Chinese Academy of Sciences,Dalian 116023,Liaoning,China;University of the Chinese Academy of Sciences,Beijing 100039,China
A guide to use fluorinated aromatic bulky cations for stable and high-performance 2D/3D perovskite solar cells:The more fluorination the better?
Lei Wang;Qin Zhou;Zilong Zhang;Wenbo Li;Xiaobing Wang;Qing Tian;Xiaoyan Yu;Ting Sun;Jihuai Wu;Bao Zhang;Peng Gao-School of Chemical Engineering and Technology,Tianjin University,Tianjin 300072,China;CAS Key Laboratory of Design and Assembly of Functional Nanostructures,and Fujian Provincial Key Laboratory of Nanomaterials,Fujian Institute of Research on the Structure of Matter,Chinese Academy of Sciences,Fuzhou 350002,Fujian,China;Laboratory for Advanced functional Materials,Xiamen Institute of Rare Earth Materials,Haixi Institute,Chinese Academy of Sciences,Xiamen 361021,Fujian,China;College of Materials Science and Engineering,Huaqiao University,361021 Xiamen,Fujian,China
Defect suppression and energy level alignment in formamidinium-based perovskite solar cells
Yi Wang;Xiaobing Wang;Chenhui Wang;Renying Cheng;Lanxin Zhao;Xu Wang;Xuewen Zhang;Jingzhi Shang;Huang Zhang;Lichen Zhao;Yongguang Tu;Wei Huang-Frontiers Science Center for Flexible Electronics,Xi'an Institute of Flexible Electronics(IFE)&Xi'an Institute of Biomedical Materials and Engineering,Northwestern Polytechnical University,Xi'an 710072,Shaanxi,China;Engineering Research Centre of Environment-Friendly Functional Materials,Ministry of Education,Fujian Engineering Research Centre of Green Functional Materials,Huaqiao University,Xiamen 361021,Fujian,China;Honors College,Northwestern Polytechnical University,Xi'an 710072,Shaanxi,China;State Key Laboratory for Artificial Microstructure and Mesoscopic Physics,School of Physics,Frontiers Science Center for Nano-optoelectronics&Collaborative Innovation Center of Quantum Matter,Peking University,Beijing 100871,China;Key Laboratory of Flexible Electronics(KLoFE)&Institution of Advanced Materials(IAM),Jiangsu National Synergetic Innovation Center for Advanced Materials(SICAM),Nanjing Tech University,Nanjing 211816,Jiangsu,China;Key Laboratory for Organic Electronics&Information Displays(KLOEID)&Institute of Advanced Materials(IAM),Nanjing University of Posts and Telecommunications,Nanjing 210023,Jiangsu,China
Reformation of thiophene-functionalized phthalocyanine isomers for defect passivation to achieve stable and efficient perovskite solar cells
Geping Qu;Danish Khan;Feini Yan;Arma?an Atsay;Hui Xiao;Qian Chen;Hu Xu;Ilgin Nar;Zong-Xiang Xu-Department of Chemistry,Southern University of Science and Technology,Shenzhen 518055,Guangdong,China;Department of Physics,Southern University of Science and Technology,Shenzhen 518055,Guangdong,China;Faculty of Science and Letters,Department of Chemistry,Istanbul Technical University,34469 Maslak,Istanbul,Turkey;Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices,Southern University of Science and Technology,Shenzhen 518055,Guangdong,China;Nanotechnology Research and Application Center-ITUnano,Istanbul Technical University,34469 Istanbul,Turkey
Self-assembled donor-acceptor hole contacts for inverted perovskite solar cells with an efficiency approaching 22%:The impact of anchoring groups
Qiaogan Liao;Yang Wang;Zilong Zhang;Kun Yang;Yongqiang Shi;Kui Feng;Bolin Li;Jiachen Huang;Peng Gao;Xugang Guo-Department of Materials Science and Engineering,Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices,Southern University of Science and Technology(SUSTech),Shenzhen 518055,Guangdong,China;College of Materials,Fujian Key Laboratory of Advanced Materials,Xiamen University,Xiamen 361005,Fujian,China;CAS Key Laboratory of Design and Assembly of Functional Nanostructures,Fujian Provincial Key Laboratory of Nanomaterials,Fujian Institute of Research on the Structure of Matter,Chinese Academy of Sciences,Fuzhou 350002,Fujian,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。