FAILED
首站-论文投稿智能助手
典型文献
Stabilizing α-phase FAPbI3 solar cells
文献摘要:
Organic-inorganic hybrid perovskite solar cells(PSCs)have been recognized as a promising and cost-effective photo-voltaic technology with the power conversion efficiency(PCE)exceeding 25%[1-3].The high efficiency is attributed to the exceptional optoelectronic properties,such as high absorp-tion coefficient,long carrier diffusion length,low non-radiat-ive recombination rate,and so on[4-7].Compared to methylam-monium lead triiodide(MAPbI3)perovskite,formamidinium lead triiodide(FAPbI3)perovskite exhibits better thermal and structural stability.Meanwhile,it has a narrower bandgap,which is close to the optimum bandgap for reaching Shockley-Queisser limit(Fig.1(a))[8].So,FAPbI3 is an ideal can-didate for highly efficient single-junction PSCs.However,the black photoactive α-FAPbI3 formed at high temperature(~150℃)can readily convert to photoinactive δ-FAPbI3 un-der ambient conditions[9-11],which is fatal to device perform-ance and stability.Therefore,various approaches have been proposed to overcome the phase transition.Here,we will dis-cuss three strategies:chloride-based additives,pseudo-hal-ide anion engineering and ionic liquid engineering.
文献关键词:
作者姓名:
Yaxin Wang;Xin Zhang;Zejiao Shi;Lixiu Zhang;Anran Yu;Yiqiang Zhan;Liming Ding
作者机构:
Center for Micro-Nano Systems,School of Information Science and Technology,Fudan University,Shanghai 200433,China;Academy for Engineering&Technology,Fudan University,Shanghai 200433,China;Center for Excellence in Nanoscience(CAS),Key Laboratory of Nanosystem and Hierarchical Fabrication(CAS),National Center for Nanoscience and Technology,Beijing 100190,China
引用格式:
[1]Yaxin Wang;Xin Zhang;Zejiao Shi;Lixiu Zhang;Anran Yu;Yiqiang Zhan;Liming Ding-.Stabilizing α-phase FAPbI3 solar cells)[J].半导体学报(英文版),2022(04):5-7
A类:
radiat,methylam,photoinactive
B类:
Stabilizing,phase,FAPbI3,solar,cells,Organic,inorganic,hybrid,perovskite,PSCs,have,been,recognized,promising,cost,effective,voltaic,technology,power,conversion,efficiency,PCE,exceeding,attributed,exceptional,optoelectronic,properties,such,absorp,coefficient,long,carrier,diffusion,length,low,recombination,Compared,monium,lead,triiodide,MAPbI3,formamidinium,exhibits,better,thermal,structural,stability,Meanwhile,narrower,bandgap,which,close,optimum,reaching,Shockley,Queisser,limit,Fig,So,ideal,can,didate,highly,single,junction,However,black,photoactive,formed,temperature,readily,convert,der,ambient,conditions,fatal,device,perform,ance,Therefore,various,approaches,proposed,overcome,transition,Here,will,dis,cuss,three,strategies,chloride,additives,pseudo,hal,anion,engineering,ionic,liquid
AB值:
0.644896
相似文献
Highly transmitted silver nanowires-SWCNTs conductive flexible film by nested density structure and aluminum-doped zinc oxide capping layer for flexible amorphous silicon solar cells
Shunliang Gao;Xiaohui Zhao;Qi Fu;Tianchi Zhang;Jun Zhu;Fuhua Hou;Jian Ni;Chengjun Zhu;Tiantian Li;Yanlai Wang;Vignesh Murugadoss;Gaber A.M.Mersal;Mohamed M.Ibrahim;Zeinhom M.El-Bahy;Mina Huang;Zhanhu Guo-The Key Laboratory of Semiconductor Photovoltaic Technology at Universities of Inner Mongolia Autonomous Region,College of Physical Science and Technology,Inner Mongolia University,Hohhot 010021,China;Department of Electronic Science and Technology,School of Electronic Information and Optical Engineering,Nankai University,Tianjin 300350,China;Advanced Materials Division,Engineered Multifunctional Composites(EMC)Nanotech LLC,Knoxville,TN 37934,United States;Integrated Composites Laboratory(ICL),Department of Chemical and Bimolecular Engineering,University of Tennessee,Knoxville,TN 37996,United States;Department of Chemistry,College of Science,Taif University,P.O.Box 11099,Taif 21944,Saudi Arabia;Department of Chemistry,Faculty of Science,Al-Azhar University,Nasr City 11884,Cairo,Egypt;College of Materials Science and Engineering,Taiyuan University of Science and Technology,Taiyuan 030024,China
Data-driven design of high-performance MASnxPb1-xI3 perovskite materials by machine learning and experimental realization
Xia Cai;Fengcai Liu;Anran Yu;Jiajun Qin;Mohammad Hatamvand;Irfan Ahmed;Jiayan Luo;Yiming Zhang;Hao Zhang;Yiqiang Zhan-School of Information Science and Technology,Fudan University,Shanghai 200433,China;College of Information,Mechanical and Electrical Engineering,Shanghai Normal University,Shanghai 200234,China;Center of Micro-Nano System,Fudan University,Shanghai 200433,China;Department of Physics,Chemistry and Biology,Link?ping University,Link?ping SE-58183,Sweden;Key Laboratory of Micro and Nano Photonic Structures and Department of Optical Science and Engineering,Fudan University,Shanghai 200433,China;Yiwu Research Institute of Fudan University,Chengbei Road,Yiwu City,Zhejiang 322000,China
Data-driven design of high-performance MASnxPb1-xI3 perovskite materials by machine learning and experimental realization
Xia Cai;Fengcai Liu;Anran Yu;Jiajun Qin;Mohammad Hatamvand;Irfan Ahmed;Jiayan Luo;Yiming Zhang;Hao Zhang;Yiqiang Zhan-School of Information Science and Technology,Fudan University,Shanghai 200433,China;College of Information,Mechanical and Electrical Engineering,Shanghai Normal University,Shanghai 200234,China;Center of Micro-Nano System,Fudan University,Shanghai 200433,China;Department of Physics,Chemistry and Biology,Link?ping University,Link?ping SE-58183,Sweden;Key Laboratory of Micro and Nano Photonic Structures and Department of Optical Science and Engineering,Fudan University,Shanghai 200433,China;Yiwu Research Institute of Fudan University,Chengbei Road,Yiwu City,Zhejiang 322000,China
Defect suppression and energy level alignment in formamidinium-based perovskite solar cells
Yi Wang;Xiaobing Wang;Chenhui Wang;Renying Cheng;Lanxin Zhao;Xu Wang;Xuewen Zhang;Jingzhi Shang;Huang Zhang;Lichen Zhao;Yongguang Tu;Wei Huang-Frontiers Science Center for Flexible Electronics,Xi'an Institute of Flexible Electronics(IFE)&Xi'an Institute of Biomedical Materials and Engineering,Northwestern Polytechnical University,Xi'an 710072,Shaanxi,China;Engineering Research Centre of Environment-Friendly Functional Materials,Ministry of Education,Fujian Engineering Research Centre of Green Functional Materials,Huaqiao University,Xiamen 361021,Fujian,China;Honors College,Northwestern Polytechnical University,Xi'an 710072,Shaanxi,China;State Key Laboratory for Artificial Microstructure and Mesoscopic Physics,School of Physics,Frontiers Science Center for Nano-optoelectronics&Collaborative Innovation Center of Quantum Matter,Peking University,Beijing 100871,China;Key Laboratory of Flexible Electronics(KLoFE)&Institution of Advanced Materials(IAM),Jiangsu National Synergetic Innovation Center for Advanced Materials(SICAM),Nanjing Tech University,Nanjing 211816,Jiangsu,China;Key Laboratory for Organic Electronics&Information Displays(KLOEID)&Institute of Advanced Materials(IAM),Nanjing University of Posts and Telecommunications,Nanjing 210023,Jiangsu,China
Surface passivation and hole extraction:Bifunctional interfacial engineering toward high-performance all-inorganic CsPbIBr2 perovskite solar cells with efficiency exceeding 12%
Qi Liu;Junming Qiu;Xianchang Yan;Yuemeng Fei;Yue Qiang;Qingyan Chang;Yi Wei;Xiaoliang Zhang;Wenming Tian;Shengye Jin;Ze Yu;Licheng Sun-State Key Laboratory of Fine Chemicals,Dalian University of Technology(DUT),Dalian 116024,Liaoning,China;School of Materials Science and Engineering,Beihang University,Beijing 100191,China;State Key Laboratory of Molecular Reaction Dynamics and the Dynamic Research Center for Energy and Environmental Materials,Dalian Institute of Chemical Physics,Chinese Academy of Sciences,Dalian 116023,Liaoning,China;Key Laboratory of Materials Modification by Laser,Ion,and Electron Beams(Ministry of Education),Dalian University of Technology(DUT),Dalian 116024,Liaoning,China;Center of Artificial Photosynthesis for Solar Fuels,School of Science,Westlake University,Hangzhou 310024,Zhejiang,China;Department of Chemistry,School of Engineering Sciences in Chemistry,Biotechnology and Health,KTH Royal Institute of Technology,10044 Stockholm,Sweden
Reconfiguring perovskite interface via R4NBr addition reaction toward efficient and stable FAPbI3-based solar cells
Hongshi Li;Zhenghao Liu;Zijing Chen;Shan Tan;Wenyan Zhao;Yiming Li;Jiangjian Shi;Huijue Wu;Yanhong Luo;Dongmei Li;Qingbo Meng-Laboratory for Renewable Energy(CAS),Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences(CAS),Beijing 100190,China;Institute of New Energy Material Chemistry,School of Materials Science and Engineering,Nankai University,Tianjin 300350,China;School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China;Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,Beijing 100049,China;Songshan Lake Materials Laboratory Dongguan,Guangdong 523808,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。