首站-论文投稿智能助手
典型文献
Air-stable Sn-based perovskite solar modules
文献摘要:
All-perovskite tandem integrated photovoltaics(APTI-PVs),which maximize the light-harvesting in full-wavelength spectral range and combine the fascinating advantages of low-cost,solu-tion-processability,and high-performance,are regarded as one of the most promising solutions for new-generation PV technology[1].Encouragingly,the power conversion efficiency(PCE)of two-terminal APTI-PV device now has been surpassed the single-junc-tion PSCs and reached a high level of exceeding 28%[2].However,this achievement was only realized in lab-scale and small-area devices.There is still a very large cell-to-module discrepancy when scaling-up the APTI-PVs.
文献关键词:
作者姓名:
Gengling Liu;Wu-Qiang Wu
作者机构:
Key Laboratory of Bioinorganic and Synthetic Chemistry(Ministry of Education),Lehn Institute of Functional Materials,School of Chemistry,Sun Yat-sen University,Guangzhou 510006,China
引用格式:
[1]Gengling Liu;Wu-Qiang Wu-.Air-stable Sn-based perovskite solar modules)[J].科学通报(英文版),2022(23):2389-2391
A类:
B类:
Air,stable,Sn,perovskite,solar,modules,All,tandem,integrated,photovoltaics,APTI,PVs,which,maximize,light,harvesting,full,wavelength,spectral,range,combine,fascinating,advantages,low,cost,processability,high,performance,regarded,one,most,promising,solutions,new,generation,technology,Encouragingly,power,conversion,efficiency,PCE,two,terminal,now,has,been,surpassed,single,junc,PSCs,reached,level,exceeding,However,this,achievement,was,only,realized,lab,scale,small,area,devices,There,still,very,large,cell,discrepancy,when,scaling,up
AB值:
0.749141
相似文献
Highly transmitted silver nanowires-SWCNTs conductive flexible film by nested density structure and aluminum-doped zinc oxide capping layer for flexible amorphous silicon solar cells
Shunliang Gao;Xiaohui Zhao;Qi Fu;Tianchi Zhang;Jun Zhu;Fuhua Hou;Jian Ni;Chengjun Zhu;Tiantian Li;Yanlai Wang;Vignesh Murugadoss;Gaber A.M.Mersal;Mohamed M.Ibrahim;Zeinhom M.El-Bahy;Mina Huang;Zhanhu Guo-The Key Laboratory of Semiconductor Photovoltaic Technology at Universities of Inner Mongolia Autonomous Region,College of Physical Science and Technology,Inner Mongolia University,Hohhot 010021,China;Department of Electronic Science and Technology,School of Electronic Information and Optical Engineering,Nankai University,Tianjin 300350,China;Advanced Materials Division,Engineered Multifunctional Composites(EMC)Nanotech LLC,Knoxville,TN 37934,United States;Integrated Composites Laboratory(ICL),Department of Chemical and Bimolecular Engineering,University of Tennessee,Knoxville,TN 37996,United States;Department of Chemistry,College of Science,Taif University,P.O.Box 11099,Taif 21944,Saudi Arabia;Department of Chemistry,Faculty of Science,Al-Azhar University,Nasr City 11884,Cairo,Egypt;College of Materials Science and Engineering,Taiyuan University of Science and Technology,Taiyuan 030024,China
A guide to use fluorinated aromatic bulky cations for stable and high-performance 2D/3D perovskite solar cells:The more fluorination the better?
Lei Wang;Qin Zhou;Zilong Zhang;Wenbo Li;Xiaobing Wang;Qing Tian;Xiaoyan Yu;Ting Sun;Jihuai Wu;Bao Zhang;Peng Gao-School of Chemical Engineering and Technology,Tianjin University,Tianjin 300072,China;CAS Key Laboratory of Design and Assembly of Functional Nanostructures,and Fujian Provincial Key Laboratory of Nanomaterials,Fujian Institute of Research on the Structure of Matter,Chinese Academy of Sciences,Fuzhou 350002,Fujian,China;Laboratory for Advanced functional Materials,Xiamen Institute of Rare Earth Materials,Haixi Institute,Chinese Academy of Sciences,Xiamen 361021,Fujian,China;College of Materials Science and Engineering,Huaqiao University,361021 Xiamen,Fujian,China
UV light absorbers executing synergistic effects of passivating defects and improving photostability for efficient perovskite photovoltaics
Jiale Li;Wenjing Qi;Yameng Li;Sumin Jiao;Hao Ling;Peng Wang;Xin Zhou;Khumal Sohail;Guangcai Wang;Guofu Hou;Jingshan Luo;Ying Zhao;Liming Ding;Yuelong Li;Xiaodan Zhang-Institute of Photoelectronic Thin Film Devices and Technology,Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin,Engineering Research Center of Thin Film Optoelectronics Technology(MoE),Nankai University,Tianjin 300350,China;College of Chemical and Pharmaceutical Engineering,Hebei University of Science and Technology,Shijiazhuang 050018,Hebei,China;Center for Excellence in Nanoscience(CAS),Key Laboratory of Nanosystem and Hierarchical Fabrication(CAS),National Center for Nanoscience and Technology,Beijing 100190,China
Self-assembled donor-acceptor hole contacts for inverted perovskite solar cells with an efficiency approaching 22%:The impact of anchoring groups
Qiaogan Liao;Yang Wang;Zilong Zhang;Kun Yang;Yongqiang Shi;Kui Feng;Bolin Li;Jiachen Huang;Peng Gao;Xugang Guo-Department of Materials Science and Engineering,Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices,Southern University of Science and Technology(SUSTech),Shenzhen 518055,Guangdong,China;College of Materials,Fujian Key Laboratory of Advanced Materials,Xiamen University,Xiamen 361005,Fujian,China;CAS Key Laboratory of Design and Assembly of Functional Nanostructures,Fujian Provincial Key Laboratory of Nanomaterials,Fujian Institute of Research on the Structure of Matter,Chinese Academy of Sciences,Fuzhou 350002,Fujian,China
Surface passivation and hole extraction:Bifunctional interfacial engineering toward high-performance all-inorganic CsPbIBr2 perovskite solar cells with efficiency exceeding 12%
Qi Liu;Junming Qiu;Xianchang Yan;Yuemeng Fei;Yue Qiang;Qingyan Chang;Yi Wei;Xiaoliang Zhang;Wenming Tian;Shengye Jin;Ze Yu;Licheng Sun-State Key Laboratory of Fine Chemicals,Dalian University of Technology(DUT),Dalian 116024,Liaoning,China;School of Materials Science and Engineering,Beihang University,Beijing 100191,China;State Key Laboratory of Molecular Reaction Dynamics and the Dynamic Research Center for Energy and Environmental Materials,Dalian Institute of Chemical Physics,Chinese Academy of Sciences,Dalian 116023,Liaoning,China;Key Laboratory of Materials Modification by Laser,Ion,and Electron Beams(Ministry of Education),Dalian University of Technology(DUT),Dalian 116024,Liaoning,China;Center of Artificial Photosynthesis for Solar Fuels,School of Science,Westlake University,Hangzhou 310024,Zhejiang,China;Department of Chemistry,School of Engineering Sciences in Chemistry,Biotechnology and Health,KTH Royal Institute of Technology,10044 Stockholm,Sweden
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。