首站-论文投稿智能助手
典型文献
Surface passivation and hole extraction:Bifunctional interfacial engineering toward high-performance all-inorganic CsPbIBr2 perovskite solar cells with efficiency exceeding 12%
文献摘要:
All-inorganic CsPbIBr2 perovskite solar cells(PSCs)have attracted considerable research attention in recent years due to their excellent thermal stability.However,their power conversion efficiencies(PCEs)are relatively low and still far below the theoretical limit.Here,we report the use of an organic dye molecule(namely VG1-C8)as a bifunctional interlayer between perovskite and the hole-transport layer in CsPbIBr2 PSCs.Combined experimental and theoretical calculation results disclose that the mul-tiple Lewis base sites in VG1-C8 can effectively passivate the trap states on the perovskite films.Meanwhile,the π-conjugated dye molecule significantly accelerates the hole extraction from the per-ovskite absorber as evidenced by the photoluminescence analysis.Consequently,the VG1-C8 treatment simultaneously boosts the photovoltage and photocurrent density values from 1.26 V and 10.80 mA cm-2 to 1.31 V and 12.44 mA cm-2,respectively.This leads to a significant enhancement of PCE from 9.20%to 12.10%under one sun irradiation(AM 1.5G).To our knowledge,this is the record efficiency reported so far for CsPbIBr2 PSCs.Thus,the present work demonstrates an effective interfacial passivation strategy for the development of highly efficient PSCs.
文献关键词:
作者姓名:
Qi Liu;Junming Qiu;Xianchang Yan;Yuemeng Fei;Yue Qiang;Qingyan Chang;Yi Wei;Xiaoliang Zhang;Wenming Tian;Shengye Jin;Ze Yu;Licheng Sun
作者机构:
State Key Laboratory of Fine Chemicals,Dalian University of Technology(DUT),Dalian 116024,Liaoning,China;School of Materials Science and Engineering,Beihang University,Beijing 100191,China;State Key Laboratory of Molecular Reaction Dynamics and the Dynamic Research Center for Energy and Environmental Materials,Dalian Institute of Chemical Physics,Chinese Academy of Sciences,Dalian 116023,Liaoning,China;Key Laboratory of Materials Modification by Laser,Ion,and Electron Beams(Ministry of Education),Dalian University of Technology(DUT),Dalian 116024,Liaoning,China;Center of Artificial Photosynthesis for Solar Fuels,School of Science,Westlake University,Hangzhou 310024,Zhejiang,China;Department of Chemistry,School of Engineering Sciences in Chemistry,Biotechnology and Health,KTH Royal Institute of Technology,10044 Stockholm,Sweden
文献出处:
引用格式:
[1]Qi Liu;Junming Qiu;Xianchang Yan;Yuemeng Fei;Yue Qiang;Qingyan Chang;Yi Wei;Xiaoliang Zhang;Wenming Tian;Shengye Jin;Ze Yu;Licheng Sun-.Surface passivation and hole extraction:Bifunctional interfacial engineering toward high-performance all-inorganic CsPbIBr2 perovskite solar cells with efficiency exceeding 12%)[J].能源化学,2022(11):387-393
A类:
CsPbIBr2,VG1
B类:
Surface,passivation,hole,extraction,Bifunctional,interfacial,engineering,toward,performance,all,inorganic,perovskite,solar,cells,efficiency,exceeding,All,PSCs,have,attracted,considerable,research,attention,recent,years,due,their,excellent,thermal,stability,However,power,conversion,efficiencies,PCEs,are,relatively,still,far,below,theoretical,limit,Here,use,dye,molecule,namely,C8,bifunctional,interlayer,between,transport,Combined,experimental,calculation,results,disclose,that,tiple,Lewis,base,sites,effectively,passivate,trap,states,films,Meanwhile,conjugated,significantly,accelerates,from,absorber,evidenced,by,photoluminescence,analysis,Consequently,treatment,simultaneously,boosts,photovoltage,photocurrent,density,values,mA,respectively,This,leads,enhancement,under,one,sun,irradiation,AM,To,our,knowledge,this,record,reported,Thus,present,work,demonstrates,strategy,development,highly,efficient
AB值:
0.593017
相似文献
Organic-semiconductor-assisted dielectric screening effect for stable and efficient perovskite solar cells
Haiyang Chen;Qinrong Cheng;Heng Liu;Shuang Cheng;Shuhui Wang;Weijie Chen;Yunxiu Shen;Xinqi Li;Haidi Yang;Heyi Yang;Jiachen Xi;Ziyuan Chen;Xinhui Lu;Hongzhen Lin;Yaowen Li;Yongfang Li-Laboratory of Advanced Optoelectronic Materials,Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices,College of Chemistry,Chemical Engineering and Materials Science,Soochow University,Suzhou 215123,China;Department of Physics,Chinese University of Hong Kong,Hong Kong 999077,China;i-Lab,Suzhou Institute of Nano-Tech and Nano-Bionics,Chinese Academy of Sciences,Suzhou 215123,China;State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials,Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application,Soochow University,Suzhou 215123,China;Beijing National Laboratory for Molecular Sciences,Institute of Chemistry,Chinese Academy of Sciences,Beijing 100190,China
Manipulate energy transport via fluorinated spacers towards record-efficiency 2D Dion-Jacobson CsPbI3 solar cells
Yutian Lei;Zhenhua Li;Haoxu Wang;Qian Wang;Guoqiang Peng;Youkui Xu;Haihua Zhang;Gang Wang;Liming Ding;Zhiwen Jin-School of Physical Science and Technology&Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education,Lanzhou University,Lanzhou 730000,China;School of Physical Science and Technology&Lanzhou Center for Theoretical Physics&Key Laboratory of Theoretical Physics of Gansu Province,Lanzhou University,Lanzhou 730000,China;Delft University of Technology,Photovoltaic Materials and Devices Group,Delft 2628CD,the Netherlands;Institute of Molecular Plus,Tianjin University,Tianjin 300072,China;Department of Microelectronic Science and Engineering,School of Physical Science and Technology,Ningbo University,Ningbo 315211,China;Key Laboratory of Nanosystem and Hierarchical Fabrication,National Center for Nanoscience and Technology,Beijing 100190,China
16.3%Efficiency binary all-polymer solar cells enabled by a novel polymer acceptor with an asymmetrical selenophene-fused backbone
Huiting Fu;Qunping Fan;Wei Gao;Jiyeon Oh;Yuxiang Li;Francis Lin;Feng Qi;Changduk Yang;Tobin J.Marks;Alex K.-Y.Jen-Department of Materials Science and Engineering,City University of Hong Kong,Kowloon 999077,Hong Kong,China;Department of Chemistry,City University of Hong Kong,Kowloon 999077,Hong Kong,China;Institute for Advanced Studies,City University of Hong Kong,Kowloon 999077,Hong Kong,China;Department of Energy Engineering,School of Energy and Chemical Engineering,Perovtronics Research Center Low Dimensional Carbon Materials Center Ulsan National Institute of Science and Technology(UNIST),50 UNIST-gil,Ulju-gun,Ulsan 44919,Republic of Korea;Department of Chemistry and the Materials Research Center Northwestern University,Evanston,IL,60208,USA;Department of Materials Science and Engineering,University of Washington,Seattle,Washington 98195-2120,USA
Low-cost polymer acceptors with noncovalently fused-ring backbones for efficient all-polymer solar cells
Xiaobin Gu;Yanan Wei;Xingzheng Liu;Na Yu;Laiyang Li;Ziyang Han;Jinhua Gao;Congqi Li;Zhixiang Wei;Zheng Tang;Xin Zhang;Hui Huang-College of Materials Science and Opto-Electronic Technology,Center of Materials Science and Optoelectronics Engineering,CAS Center for Excellence in Topological Quantum Computation,CAS Key Laboratory of Vacuum Physics,University of Chinese Academy of Sciences,Beijing 100049,China;Center for Advanced Low-dimension Materials,State Key Laboratory for Modification of Chemical Fibers and Polymer Materials,College of Materials Science and Engineering,Donghua University,Shanghai 201620,China;CAS Key Laboratory of Nanosystem and Hierarchical Fabrication,CAS Center for Excellence in Nanoscience,National Center for Nanoscience and Technology,Beijing 100190,China
Reconfiguring perovskite interface via R4NBr addition reaction toward efficient and stable FAPbI3-based solar cells
Hongshi Li;Zhenghao Liu;Zijing Chen;Shan Tan;Wenyan Zhao;Yiming Li;Jiangjian Shi;Huijue Wu;Yanhong Luo;Dongmei Li;Qingbo Meng-Laboratory for Renewable Energy(CAS),Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences(CAS),Beijing 100190,China;Institute of New Energy Material Chemistry,School of Materials Science and Engineering,Nankai University,Tianjin 300350,China;School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China;Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,Beijing 100049,China;Songshan Lake Materials Laboratory Dongguan,Guangdong 523808,China
Lowing the energy loss of organic solar cells by molecular packing engineering via multiple molecular conjugation extension
Hongbin Chen;Yalu Zou;Huazhe Liang;Tengfei He;Xiaoyun Xu;Yunxin Zhang;Zaifei Ma;Jing Wang;Mingtao Zhang;Quanwen Li;Chenxi Li;Guankui Long;Xiangjian Wan;Zhaoyang Yao;Yongsheng Chen-State Key Laboratory and Institute of Elemento-Organic Chemistry,Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials,Renewable Energy Conversion and Storage Center(RECAST),College of Chemistry,Nankai University,Tianjin 300071,China;School of Materials Science and Engineering,National Institute for Advanced Materials,Renewable Energy Conversion and Storage Center(RECAST),Nankai University,Tianjin 300350,China;State Key Laboratory for Modification of Chemical Fibers and Polymer Materials,Center for Advanced Low-dimension Materials,College of Materials Science and Engineering,Donghua University,Shanghai 201620,China;School of Materials Science&Engineering,Tianjin University of Technology,Tianjin 300384,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。