首站-论文投稿智能助手
典型文献
Heterogeneously integrated quantum-dot emitters efficiently driven by a quasi-BIC-supporting dielectric nanoresonator
文献摘要:
Bound states in the continuum (BICs) can make subwavelength dielectric resonators sustain low radiation leakage, paving a new way to minimize the device size, enhance photoluminescence, and even realize lasing. Here, we present a quasi-BIC-supporting GaAs nanodisk with embedded InAs quantum dots as a compact bright on-chip light source, which is realized by heterogeneous integration, avoiding complex multilayered construction and subsequent mismatch and defects. The emitters are grown inside the nanodisk to match the mode field distribution to form strong light–matter interaction. One fabricated sample demonstrates a photoluminescence peak sustaining a quality factor up to 68 enhanced by the quasi-BIC, and the emitting effect can be further promoted by improving the epilayer quality and optimizing the layer-transferring process in the fabrication. This work provides a promising solution to building an ultracompact optical source to be integrated on a silicon photonic chip for high-density integration.
文献关键词:
作者姓名:
Li Liu;Ruxue Wang;Xuyi Zhao;Wenfu Yu;Yi Jin;Qian Gong;Aimin Wu
作者机构:
State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China;Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China;Key Laboratory of Terahertz Solid State Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China;Centre for Optical and Electromagnetic Research and International Research Center for Advanced Photonics, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310058, China;e-mail: jinyi_2008@zju.edu.cn;e-mail: qgong@mail.sim.ac.cn;e-mail: wuaimin@mail.sim.ac.cn
引用格式:
[1]Li Liu;Ruxue Wang;Xuyi Zhao;Wenfu Yu;Yi Jin;Qian Gong;Aimin Wu-.Heterogeneously integrated quantum-dot emitters efficiently driven by a quasi-BIC-supporting dielectric nanoresonator)[J].光子学研究(英文),2022(08):1971
A类:
Heterogeneously,nanoresonator,ultracompact
B类:
integrated,quantum,emitters,efficiently,driven,by,quasi,supporting,dielectric,Bound,states,continuum,BICs,can,make,subwavelength,resonators,low,radiation,leakage,paving,new,way,minimize,device,size,photoluminescence,even,lasing,Here,we,present,GaAs,nanodisk,embedded,InAs,dots,bright,chip,light,source,which,realized,heterogeneous,integration,avoiding,complex,multilayered,construction,subsequent,mismatch,defects,are,grown,inside,mode,field,distribution,form,strong,matter,interaction,One,fabricated,sample,demonstrates,peak,sustaining,quality,enhanced,emitting,effect,further,promoted,improving,epilayer,optimizing,transferring,process,fabrication,This,work,provides,promising,solution,building,optical,silicon,photonic,high,density
AB值:
0.636983
相似文献
Nanoscale mapping of optically inaccessible bound-states-in-the-continuum
Zhaogang Dong;Zackaria Mahfoud;Ramón Paniagua-Domínguez;Hongtao Wang;Antonio I.Fernández-Domínguez;Sergey Gorelik;Son Tung Ha;Febiana Tjiptoharsono;Arseniy I.Kuznetsov;Michel Bosman;Joel K.W.Yang-Institute of Materials Research and Engineering,A*STAR(Agency for Science,Technology and Research),2 Fusionopolis Way,#08-03 Innovis,138634 Singapore,Singapore;Department of Materials Science and Engineering,National University of Singapore,9 Engineering Drive 1,117575 Singapore,Singapore;Singapore University of Technology and Design,8 Somapah Road,487372 Singapore,Singapore;Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center,Universidad Autónoma de Madrid,28049 Madrid,Spain;Singapore Institute of Food and Biotechnology Innovation,A*STAR(Agency for Science,Technology and Research),31 Biopolis Way,#01-02 Nanos,138669 Singapore,Singapore
Soliton formation and spectral translation into visible on CMOS-compatible 4H-silicon-carbide-on-insulator platform
Chengli Wang;Jin Li;Ailun Yi;Zhiwei Fang;Liping Zhou;Zhe Wang;Rui Niu;Yang Chen;Jiaxiang Zhang;Ya Cheng;Junqiu Liu;Chun-Hua Dong;Xin Ou-State Key Laboratory of Functional Materials for Informatics,Shanghai Institute of Microsystem and Information Technology,Chinese Academy of Sciences,200050 Shanghai,China;The Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,100049 Beijing,China;CAS Key Laboratory of Quantum Information,University of Science and Technology of China,230026 Hefei,China;CAS Center for Excellence in Quantum Information and Quantum Physics,University of Science and Technology of China,230026 Hefei,China;The Extreme Optoelectromechanics Laboratory(XXL),School of Physics and Electronic Science,East China Normal University,200241 Shanghai,China;State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science,Shanghai Institute of Optics and Fine Mechanics,Chinese Academy of Sciences,201800 Shanghai,China;International Quantum Academy,518048 Shenzhen,China;Hefei National Laboratory,University of Science and Technology of China,Hefei 230026,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。