首站-论文投稿智能助手
典型文献
Giant magneto field effect in up-conversion amplified spontaneous emission via spatially extended states in organic-inorganic hybrid perovskites
文献摘要:
Up-conversion lasing actions are normally difficult to realize in light-emitting materials due to small multi-photon absorp-tion cross section and fast dephasing of excited states during multi-photon excitation. This paper reports an easily ac-cessible up-conversion amplified spontaneous emission (ASE) in organic-inorganic hybrid perovskites (MAPbBr3) films by optically exciting broad gap states with sub-bandgap laser excitation. The broad absorption was optimized by adjust-ing the grain sizes in the MAPbBr3 films. At low sub-bandgap pumping intensities, directly exciting the gap states leads to 2-photon, 3-photon, and 4-photon up-conversion spontaneous emission, revealing a large optical cross section of multi-photon excitation occurring in such hybrid perovskite films. At moderate pumping intensity (1.19 mJ/cm2) of 700 nm laser excitation, a significant spectral narrowing phenomenon was observed with the full width at half maximum (FWHM) de-creasing from 18 nm to 4 nm at the peak wavelength of 550 nm, simultaneously with a nonlinear increase on spectral peak intensity, showing an up-conversion ASE realized at low threshold pumping fluence. More interestingly, the up-con-version ASE demonstrated a giant magnetic field effect, leading to a magneto-ASE reaching 120%. In contrast, the up-conversion photoluminescence (PL) showed a negligible magnetic field effect (< 1%). This observation provides an evid-ence to indicate that the light-emitting states responsible for up-conversion ASE are essentially formed as spatially exten-ded states. The angular dependent spectrum results further verify the existence of spatially extended states which are polarized to develop coherent in-phase interaction. Clearly, using broad gap states with spatially extended light-emitting states presents a new approach to develop up-conversion ASE in organic-inorganic hybrid perovskites.
文献关键词:
作者姓名:
Tangyao Shen;Jiajun Qin;Yujie Bai;Jia Zhang;Lei Shi;Xiaoyuan Hou;Jian Zi;Bin Hu
作者机构:
Department of Physics,Fudan University,Shanghai 200433,China;Department of Physics,Chemistry and Biology(IFM),Link?ping University,Link?ping 58183,Sweden;Department of Materials Science and Engineering,University of Tennessee,Knoxville,Tennessee 37996,USA
引用格式:
[1]Tangyao Shen;Jiajun Qin;Yujie Bai;Jia Zhang;Lei Shi;Xiaoyuan Hou;Jian Zi;Bin Hu-.Giant magneto field effect in up-conversion amplified spontaneous emission via spatially extended states in organic-inorganic hybrid perovskites)[J].光电进展(英文版),2022(02):33-41
A类:
cessible,evid
B类:
Giant,magneto,field,effect,up,conversion,amplified,spontaneous,emission,via,spatially,extended,states,inorganic,hybrid,perovskites,Up,lasing,actions,are,normally,difficult,light,emitting,materials,due,small,multi,photon,cross,section,fast,dephasing,excited,during,excitation,This,paper,reports,easily,ASE,MAPbBr3,films,by,optically,exciting,broad,sub,bandgap,laser,absorption,was,optimized,adjust,grain,sizes,At,low,pumping,intensities,directly,leads,revealing,large,occurring,such,moderate,intensity,mJ,significant,spectral,narrowing,phenomenon,observed,full,width,half,maximum,FWHM,creasing,from,peak,wavelength,simultaneously,nonlinear,increase,showing,realized,threshold,fluence,More,interestingly,demonstrated,giant,magnetic,leading,reaching,In,contrast,photoluminescence,PL,showed,negligible,observation,provides,indicate,that,responsible,essentially,formed,angular,dependent,spectrum,results,further,verify,existence,which,polarized,develop,coherent,phase,interaction,Clearly,using,presents,new,approach
AB值:
0.482801
相似文献
Nanoscale mapping of optically inaccessible bound-states-in-the-continuum
Zhaogang Dong;Zackaria Mahfoud;Ramón Paniagua-Domínguez;Hongtao Wang;Antonio I.Fernández-Domínguez;Sergey Gorelik;Son Tung Ha;Febiana Tjiptoharsono;Arseniy I.Kuznetsov;Michel Bosman;Joel K.W.Yang-Institute of Materials Research and Engineering,A*STAR(Agency for Science,Technology and Research),2 Fusionopolis Way,#08-03 Innovis,138634 Singapore,Singapore;Department of Materials Science and Engineering,National University of Singapore,9 Engineering Drive 1,117575 Singapore,Singapore;Singapore University of Technology and Design,8 Somapah Road,487372 Singapore,Singapore;Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center,Universidad Autónoma de Madrid,28049 Madrid,Spain;Singapore Institute of Food and Biotechnology Innovation,A*STAR(Agency for Science,Technology and Research),31 Biopolis Way,#01-02 Nanos,138669 Singapore,Singapore
Compact ultrabroadband light-emitting diodes based on lanthanide-doped lead-free double perovskites
Shilin Jin;Renfu Li;Hai Huang;Naizhong Jiang;Jidong Lin;Shaoxiong Wang;Yuanhui Zheng;Xueyuan Chen;Daqin Chen-College of Physics and Energy,Fujian Normal University,Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials,Fuzhou 350117,China;Fujian Science&Technology Innovation Laboratory for Optoelectronic Information,Fuzhou 350116,China;CAS Key Laboratory of Design and Assembly of Functional Nanostructures,Fujian Key Laboratory of Nanomaterials and State Key Laboratory of Structural Chemistry,Fujian Institute of Research on the Structure of Matter,Chinese Academy of Sciences,Fuzhou,Fujian 350002,China;Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering,Fuzhou 350117,China;Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy Storage,Fuzhou 350117,China;College of Chemistry,Fuzhou University,Fuzhou 350116,China
Heterogeneously integrated quantum-dot emitters efficiently driven by a quasi-BIC-supporting dielectric nanoresonator
Li Liu;Ruxue Wang;Xuyi Zhao;Wenfu Yu;Yi Jin;Qian Gong;Aimin Wu-State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China;Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China;Key Laboratory of Terahertz Solid State Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China;Centre for Optical and Electromagnetic Research and International Research Center for Advanced Photonics, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310058, China;e-mail: jinyi_2008@zju.edu.cn;e-mail: qgong@mail.sim.ac.cn;e-mail: wuaimin@mail.sim.ac.cn
Heterogeneously integrated quantum-dot emitters efficiently driven by a quasi-BIC-supporting dielectric nanoresonator
LI LIU;RUXUE WANG;XUYI ZHAO;WENFU YU;YI JIN;QIAN GONG;AIMIN WU-State Key Laboratory of Functional Materials for Informatics,Shanghai Institute of Microsystem and Information Technology,Chinese Academy of Sciences,Shanghai 200050,China;Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,Beijing 100049,China;Key Laboratory of Terahertz Solid State Technology,Shanghai Institute of Microsystem and Information Technology,Chinese Academy of Sciences,Shanghai 200050,China;Centre for Optical and Electromagnetic Research and International Research Center for Advanced Photonics,College of Optical Science and Engineering,Zhejiang University,Hangzhou 310058,China
Dynamic bifunctional THz metasurface via dual-mode decoupling
Xuan Cong;Hongxin Zeng;Shiqi Wang;Qiwu Shi;Shixiong Liang;Jiandong Sun;Sen Gong;Feng Lan;Ziqiang Yang;Yaxin Zhang-Terahertz Science and Technology Research Center, University of Electronic Science and Technology of China, Chengdu 610000, China;College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China;National Key Laboratory of Application Specific Integrated Circuit, Hebei Semiconductor Research Institute, Shijiazhuang 050051, China;Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, China;Yangtze Delta Region Institute (HuZhou), University of Electronic Science and Technology of China, Huzhou 313001, China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。