首站-论文投稿智能助手
典型文献
Discovery of carbon-based strongest and hardest amorphous material
文献摘要:
Carbon is one of the most fascinating elements due to its structurally diverse allotropic forms stemming from its bonding varieties (sp,sp2 and sp3).Exploring new forms of carbon has been the eternal theme of scientific research.Herein,we report on amorphous (AM) carbon materials with a high fraction of sp3 bonding recovered from compression offullerene C60 under high pressure and high temperature,previously unexplored.Analysis ofphotoluminescence and absorption spectra demonstrates that they are semiconducting with a bandgap range of 1.5-2.2 eV,comparable to that of widely used AM silicon.Comprehensive mechanical tests demonstrate that synthesized AM-Ⅲ carbon is the hardest and strongest AM material known to date,and can scratch diamond crystal and approach its strength.The produced AM carbon materials combine outstanding mechanical and electronic properties,and may potentially be used in photovoltaic applications that require ultrahigh strength and wear resistance.
文献关键词:
作者姓名:
Shuangshuang Zhang;Zihe Li;Kun Luo;Julong He;Yufei Gao;Alexander V.Soldatov;Vicente Benavides;Kaiyuan Shi;Anmin Nie;Bin Zhang;Wentao Hu;Mengdong Ma;Yong Liu;Bin Wen;Guoying Gao;Bing Liu;Yang Zhang;Yu Shu;Dongli Yu;Xiang-Feng Zhou;Zhisheng Zhao;Bo Xu;Lei Su;Guoqiang Yang;Olga P.Chernogorova;Yongjun Tian
作者机构:
Center for High Pressure Science(CHiPS),State Key Laboratory of Metastable Materials Science and Technology,Yanshan University,Qinhuangdao 066004,China;Key Laboratory for Microstructural Material Physics of Hebei Province,School of Science,Yanshan University,Qinhuangdao 066004,China;Department of Engineering Sciences and Mathematics,Lule(a) University of Technology,Lule(a)SE-97187,Sweden;Department of Physics,Harvard University,Cambridge,MA 02138,USA;Center for High Pressure Science and Technology Advanced Research,Shanghai 201203,China;Department of Materials Science,Saarland University,Saarbrücken D-66123,Germany;Key Laboratory of Photochemistry,Institute of Chemistry,University of Chinese Academy of Sciences,Beijing 100190,China;Baikov Institute of Metallurgy and Materials Science,Russian Academy of Sciences,Moscow 119334,Russia
引用格式:
[1]Shuangshuang Zhang;Zihe Li;Kun Luo;Julong He;Yufei Gao;Alexander V.Soldatov;Vicente Benavides;Kaiyuan Shi;Anmin Nie;Bin Zhang;Wentao Hu;Mengdong Ma;Yong Liu;Bin Wen;Guoying Gao;Bing Liu;Yang Zhang;Yu Shu;Dongli Yu;Xiang-Feng Zhou;Zhisheng Zhao;Bo Xu;Lei Su;Guoqiang Yang;Olga P.Chernogorova;Yongjun Tian-.Discovery of carbon-based strongest and hardest amorphous material)[J].国家科学评论(英文版),2022(01):20-30
A类:
allotropic,offullerene,ofphotoluminescence
B类:
Discovery,carbon,strongest,hardest,amorphous,Carbon,one,most,fascinating,elements,due,its,structurally,diverse,forms,stemming,from,bonding,varieties,sp2,sp3,Exploring,new,has,been,eternal,theme,scientific,research,Herein,report,AM,materials,fraction,recovered,compression,C60,under,pressure,temperature,previously,unexplored,Analysis,absorption,spectra,demonstrates,that,they,are,semiconducting,bandgap,range,eV,comparable,widely,used,silicon,Comprehensive,mechanical,tests,synthesized,known,date,can,scratch,diamond,crystal,approach,strength,produced,combine,outstanding,electronic,properties,may,potentially,photovoltaic,applications,require,ultrahigh,wear,resistance
AB值:
0.634223
相似文献
Highly transmitted silver nanowires-SWCNTs conductive flexible film by nested density structure and aluminum-doped zinc oxide capping layer for flexible amorphous silicon solar cells
Shunliang Gao;Xiaohui Zhao;Qi Fu;Tianchi Zhang;Jun Zhu;Fuhua Hou;Jian Ni;Chengjun Zhu;Tiantian Li;Yanlai Wang;Vignesh Murugadoss;Gaber A.M.Mersal;Mohamed M.Ibrahim;Zeinhom M.El-Bahy;Mina Huang;Zhanhu Guo-The Key Laboratory of Semiconductor Photovoltaic Technology at Universities of Inner Mongolia Autonomous Region,College of Physical Science and Technology,Inner Mongolia University,Hohhot 010021,China;Department of Electronic Science and Technology,School of Electronic Information and Optical Engineering,Nankai University,Tianjin 300350,China;Advanced Materials Division,Engineered Multifunctional Composites(EMC)Nanotech LLC,Knoxville,TN 37934,United States;Integrated Composites Laboratory(ICL),Department of Chemical and Bimolecular Engineering,University of Tennessee,Knoxville,TN 37996,United States;Department of Chemistry,College of Science,Taif University,P.O.Box 11099,Taif 21944,Saudi Arabia;Department of Chemistry,Faculty of Science,Al-Azhar University,Nasr City 11884,Cairo,Egypt;College of Materials Science and Engineering,Taiyuan University of Science and Technology,Taiyuan 030024,China
Revealing the nature of optical activity in carbon dots produced from different chiral precursor molecules
Ananya Das;Evgeny V.Kundelev;Anna A.Vedernikova;Sergei A.Cherevkov;Denis V.Danilov;Aleksandra V.Koroleva;Evgeniy V.Zhizhin;Anton N.Tsypkin;Aleksandr P.Litvin;Alexander V.Baranov;Anatoly V.Fedorov;Elena V.Ushakova;Andrey L.Rogach-Center of Information Optical Technologies,ITMO University,Saint Petersburg 197101,Russia;Research Park,Saint Petersburg State University,Saint Petersburg 199034,Russia;Laboratory of Femtosecond Optics and Femtotechnology,ITMO University,Saint Petersburg 197101,Russia;Laboratory of Quantum Processes and Measurements,ITMO University,Saint Petersburg 197101,Russia;Department of Materials Science and Engineering,and Centre for Functional Photonics(CFP),City University of Hong Kong,Kowloon,Hong Kong SAR 999077,China;Shenzhen Research Institute,City University of Hong Kong,Shenzhen 518057,China
Light-induced tumor theranostics based on chemical-exfoliated borophene
Zhongjian Xie;Yanhong Duo;Taojian Fan;Yao Zhu;Shuai Feng;Chuanbo Li;Honglian Guo;Yanqi Ge;Shakeel Ahmed;Weichun Huang;Huiling Liu;Ling Qi;Rui Guo;Defa Li;Paras N.Prasad;Han Zhang-Institute of Pediatrics,Shenzhen Children's Hospital,Shenzhen,Guangdong,China;Shenzhen Engineering Laboratory of phosphorene and Optoelectronics;International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education,Shenzhen Institute of Translational Medicine,Department of Otolaryngology,Shenzhen Second People's Hospital,the First Affiliated Hospital,Institute of Microscale Optoelectronics,Shenzhen University,518060 Shenzhen,China;Department of Microbiology,Tumor and Cell Biology(MTC),Karolinska Institute,Stockholm,Sweden;Shenzhen Medical Ultrasound Engineering Center,Department of Ultrasonography,Shenzhen People's Hospital,Second Clinical Medical College of Jinan University,First Clinical Medical College of Southern University of Science and Technology,518020 Shenzhen,China;Optoelectronics Research Center,School of Science,Minzu University of China,100081 Beijing,PR China;Nantong Key Lab of Intelligent and New Energy Materials,College of Chemistry and Chemical Engineering,Nantong University,226019 Nantong,Jiangsu,China;Key Laboratory of Biomaterials of Guangdong Higher Education Institutes,Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development,Department of Biomedical Engineering,Jinan University,510632 Guangzhou,China;Department of Core Medical Laboratory,the Sixth Affiliated Hospital of Guangzhou Medical University,Qingyuan People's Hospital,Qingyuan,Guang Dong Province,China;Department of Laboratory Medicine,Shenzhen Children's Hospital,Shenzhen,Guangdong,China;Institute for Lasers,Photonics,and Biophotonics and Department of Chemistry,University at Buffalo,State University of New York,Buffalo,NY,USA
Soliton formation and spectral translation into visible on CMOS-compatible 4H-silicon-carbide-on-insulator platform
Chengli Wang;Jin Li;Ailun Yi;Zhiwei Fang;Liping Zhou;Zhe Wang;Rui Niu;Yang Chen;Jiaxiang Zhang;Ya Cheng;Junqiu Liu;Chun-Hua Dong;Xin Ou-State Key Laboratory of Functional Materials for Informatics,Shanghai Institute of Microsystem and Information Technology,Chinese Academy of Sciences,200050 Shanghai,China;The Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,100049 Beijing,China;CAS Key Laboratory of Quantum Information,University of Science and Technology of China,230026 Hefei,China;CAS Center for Excellence in Quantum Information and Quantum Physics,University of Science and Technology of China,230026 Hefei,China;The Extreme Optoelectromechanics Laboratory(XXL),School of Physics and Electronic Science,East China Normal University,200241 Shanghai,China;State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science,Shanghai Institute of Optics and Fine Mechanics,Chinese Academy of Sciences,201800 Shanghai,China;International Quantum Academy,518048 Shenzhen,China;Hefei National Laboratory,University of Science and Technology of China,Hefei 230026,China
Approaching strain limit of two-dimensional MoS2 via chalcogenide substitution
Kailang Liu;Xiang Chen;Penglai Gong;Ruohan Yu;Jinsong Wu;Liang Li;Wei Han;Sanjun Yang;Chendong Zhang;Jinghao Deng;Aoju Li;Qingfu Zhang;Fuwei Zhuge;Tianyou Zhai-State Key Laboratory of Materials Processing and Die & Mould Technology,School of Materials Science and Engineering,Huazhong University of Science and Technology,Wuhan 430074,China;Nano and Heterogeneous Materials Center,School of Materials Science and Engineering,Nanjing University of Science and Technology,Nanjing 210094,China;Department of Physics,Southern University of Science and Technology,Shenzhen 518055,China;State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Nanostructure Research Center,Wuhan University of Technology,Wuhan 430070,China;Institutes of Physical Science and Information Technology,Anhui University,Hefei 231699,China;School of Physics and Technology,Wuhan University,Wuhan 430072,China
Enhancing structure and cycling stability of Ni-rich layered oxide cathodes at elevated temperatures via dual-function surface modification
Ying-De Huang;Han-Xin Wei;Pei-Yao Li;Yu-Hong Luo;Qing Wen;Ding-Hao Le;Zhen-Jiang He;Hai-Yan Wang;You-Gen Tang;Cheng Yan;Jing Mao;Ke-Hua Dai;Xia-Hui Zhang;Jun-Chao Zheng-School of Metallurgy and Environment,Central South University,Changsha 410083,Hunan,China;National Engineering Laboratory for High Efficiency Recovery of Refractory Nonferrous Metals,Central South University,Changsha 410083,Hunan,China;Engineering Research Center of the Ministry of Education for Advanced Battery Materials,Central South University,Changsha 410083,Hunan,China;Hunan Provincial Key Laboratory of Chemical Power Sources,College of Chemistry and Chemical Engineering,Central South University,Changsha 410083,Hunan,China;School of Mechanical,Medical and Process Engineering,Queensland University of Technology,Brisbane 4001,Queensland,Australia;School of Materials Science and Engineering,Zhengzhou University,Zhengzhou 450001,Henan,China;College of Chemistry,Tianjin Normal University,Tianjin 300387,China;School of Mechanical and Materials Engineering,Washington State University,Pullman 99164,Washington,USA
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。