首站-论文投稿智能助手
典型文献
Do model choice and sample ratios separately or simultaneously influence soil organic matter prediction?
文献摘要:
This study was performed to examine the separate and simultaneous influence of predictive models'choice alongside sample ratios selection in soil organic matter(SOM).The research was carried out in northern Morocco,characterized by relatively cold weather and diverse geological conditions.The dataset herein used accounted for 1591 soil samples,which were randomly split into the following ra-tios:10%(~150 sample ratio),20%(~250 sample ratio),35%(~450 sample ratio),50%(~600 sample ratio)and 95%(~1200 sample ratio).Models herein involved were ordinary kriging(OK),regression kriging(RK),multiple linear regression(MLR),random forest(RF),quantile regression forest(QRF),Gaussian process regression(GPR)and an ensemble model.The findings in the study showed that the accuracy of SOM prediction is sensitive to both predictive models and sample ratios.OK combined with 95%sample ratio performed equally to RF in conjunction with all the sample ratios,as the latter did not show much sensitivity to sample ratios.ANOVA results revealed that RF with a-10%sample ratio could also be optimum for predicting SOM in the study area.In conclusion,the findings herein reported could be instrumental for producing cost-effective detailed and accurate spatial estimation of SOM in other sites.Furthermore,they could serve as a baseline study for future research in the region or elsewhere.Therefore,we recommend conducting series of simulation of all possible combinations between various predictive models and sample ratios as a preliminary step in soil organic matter prediction.
文献关键词:
作者姓名:
Kingsley John;Yassine Bouslihim;Kokei Ikpi Ofem;Lahcen Hssaini;Rachid Razouk;Paul Bassey Okon;Isong Abraham Isong;Prince Chapman Agyeman;Ndiye Michael Kebonye;Chengzhi Qin
作者机构:
Department of Soil Science and Soil Protection,Faculty of Agrobiology,Food,and Natural Resources,Czech University of Life Sciences,Kamycká 129,16500,Prague,Czech Republic;National Institute of Agricultural Research,Morocco;Department of Soil Science,Faculty of Agriculture,Forestry and Wildlife Resources Management,University of Calabar,PMB 1115,540004,Etta Agbo Road,Calabar,Nigeria;State Key Laboratory of Resources and Environmental Information System,Institute of Geographical Sciences and Natural Resources Research,CAS,Beijing,100101,China
引用格式:
[1]Kingsley John;Yassine Bouslihim;Kokei Ikpi Ofem;Lahcen Hssaini;Rachid Razouk;Paul Bassey Okon;Isong Abraham Isong;Prince Chapman Agyeman;Ndiye Michael Kebonye;Chengzhi Qin-.Do model choice and sample ratios separately or simultaneously influence soil organic matter prediction?)[J].国际水土保持研究(英文),2022(03):470-486
A类:
B类:
Do,choice,ratios,separately,simultaneously,influence,soil,organic,matter,prediction,This,study,was,performed,examine,predictive,models,alongside,selection,SOM,research,carried,out,northern,Morocco,characterized,by,relatively,cold,weather,diverse,geological,conditions,dataset,herein,used,accounted,samples,which,were,randomly,split,into,following,Models,involved,ordinary,kriging,OK,regression,RK,multiple,linear,MLR,forest,quantile,QRF,Gaussian,process,GPR,ensemble,findings,showed,that,accuracy,sensitive,both,combined,equally,conjunction,latter,did,not,much,sensitivity,ANOVA,results,revealed,could,also,optimum,predicting,area,In,conclusion,reported,instrumental,producing,cost,effective,detailed,accurate,spatial,estimation,other,sites,Furthermore,they,serve,baseline,future,region,elsewhere,Therefore,recommend,conducting,series,simulation,possible,combinations,between,various,preliminary,step
AB值:
0.541601
相似文献
Conversion of pure Chinese fir plantation to multi-layered mixed plantation enhances the soil aggregate stability by regulating microbial communities in subtropical China
Guannv Gao;Xueman Huang;Haocheng Xu;Yi Wang;Weijun Shen;Wen Zhang;Jinliu Yan;Xiaoyan Su;Shushou Liao;Yeming You-Guangxi Key Laboratory of Forest Ecology and Conservation,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources,College of Forestry,Guangxi University,Nanning 530004,China;Guangxi Youyiguan Forest Ecosystem Research Station,Pingxiang,532600,Guangxi,China;School of Agriculture,Shenzhen Campus of Sun Yat-sen University,Shenzhen,518107,Guangdong China;Institute of Resources and Environment,Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo&Rattan Science and Technology,International Centre for Bamboo and Rattan,Beijing 100102,China;Experimental Centre of Tropical Forestry,Chinese Academy of Forestry,Pingxiang 532600,Guangxi,China
Detection of oil spill based on CBF-CNN using HY-1C CZI multispectral images
Kai Du;Yi Ma;Zongchen Jiang;Xiaoqing Lu;Junfang Yang-College of Geodesy and Geomatics,Shandong University of Science and Technology,Qingdao 266590,China;First Institute of Oceanology,Ministry of Natural Resources,Qingdao 266061,China;Technology Innovation Center for Ocean Telemetry,Ministry of Natural Resources,Qingdao 266061,China;National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology,Xi'an 710072,China;School of Electronics and Information Engineering,Harbin Institute of Technology,Harbin 150001,China;National Satellite Ocean Application Service,Beijing 100081,China;College of Oceanography and Space Informatics,China University of Petroleum(East China),Qingdao 266580, China
Rapid screening of Zr-containing particles from Chang'e-5 lunar soil samples for isotope geochronology:Technical roadmap for future study
Jin-Hua Li;Qiu-Li Li;Liang Zhao;Jin-Hai Zhang;Xu Tang;Li-Xin Gu;Qian Guo;Hong-Xia Ma;Qin Zhou;Yan Liu;Pei-Yu Liu;Hao Qiu;Gang Li;Lin Gu;Shun Guo;Chun-Lai Li;Xian-Hua Li;Fu-Yuan Wu;Yong-Xin Pan-Key Laboratory of Earth and Planetary Physics,Institute of Geology and Geophysics,Chinese Academy of Sciences,Beijing 100029,China;College of Earth and Planetary Sciences,University of Chinese Academy of Sciences,Beijing 100049,China;State Key Laboratory of Lithospheric Evolution,Institute of Geology and Geophysics,Chinese Academy of Sciences,Beijing 100029,China;Key Laboratory of Lunar and Deep Space Exploration,National Astronomical Observatories,Chinese Academy of Sciences,Beijing 100012,China;Institute of High Energy Physics,Chinese Academy of Science,Yuquan Road 19B,Shijingshan District,Beijing 100049,China;Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China
Size fractions of organic matter pools influence their stability:Application of the Rock-Eval? analysis to beech forest soils
David SEBAG;Eric P.VERRECCHIA;Thierry ADATTE;Micha?l AUBERT;Guillaume CAILLEAU;Thibaud DECA?NS;Isabelle KOWALEWSKI;Jean TRAP;Fabrice BUREAU;Micka?l HEDDE-Normandie Univ,Université de Rouen Normandie(UNIROUEN),Centre National de la Recherche Scientifique(CNRS),M2C,Rouen 76000(France);Institute of Earth Surface Dynamics(IDYST),Geopolis,University of Lausanne,Lausanne 1015(Switzerland);Institut Fran?ais du Pétrole Energies Nouvelles(IFPEN),Earth Sciences and Environmental Technologies Division,Rueil-Malmaison 92852(France);Institute of Earth Sciences(ISTE),Geopolis,University of Lausanne,Lausanne 1015(Switzerland);Normandie Univ,Université de Rouen Normandie(UNIROUEN),Institut National de Recherche pour l Agriculture,l'Alimentation et l'Environnement(INRAE),Laboratoire étude et Compréhension de la bioDIVersité(ECODIV),Rouen 76000(France);Laboratory of Microbiology,Institute of Biology,University of Neuchatel,Neuchatel 2000(Switzerland);Centre d'Ecologie Fonctionnelle et Evolutive(CEFE),Université de Montpellier,CNRS,Ecole Pratique des Hautes Etudes(EPHE),Institut de Recherche pour le Développement(IRD),Montpellier 34000(France);Eco&Sols,INRAE,IRD,Université de Montpellier,Montpellier 34000(France)
Comparing the Soil Conservation Service model with new machine learning algorithms for predicting cumulative infiltration in semi-arid regions
Khabat KHOSRAVI;Phuong T.T.NGO;Rahim BARZEGAR;John QUILTY;Mohammad T.AALAMI;Dieu T.BUI-Department of Watershed Management Engineering,Ferdowsi University of Mashhad,Mashhad 93 Iran;Department of Earth and Environment,Florida International University,Miami 33199 USA;Institute of Research and Development,Duy Tan University,Da Nang 550000 Vietnam;Department of Bioresource Engineering,McGill University,Ste Anne de Bellevue QC H9X Canada;Faculty of Civil Engineering,University of Tabriz,Tabriz 51 Iran;Department of Civil and Environmental Engineering,University of Waterloo,Waterloo N2L 3G1 Canada;Department of Business and IT,University of South-Eastern Norway,Notodden 3603 Norway
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。