FAILED
首站-论文投稿智能助手
典型文献
Links between winter dust over the Tibetan Plateau and preceding autumn sea ice variability in the Barents and Kara Seas
文献摘要:
The Tibetan Plateau(TP)is characterized by heavily local dust activities,however,the mechanism of interannual variations of winter dust frequency over the TP remain poorly understood.Previous studies showed the autumn Arctic sea ice could significantly influence the winter climate over Eurasia.Whether autumn sea ice affects winter dust activity over the TP or not?Here,we used an integrated surface database to investigate possible mechanisms for interannual variability in the frequency of winter dust events above the TP.This variability,which is thought to be mainly caused by local dust emissions,shows significant correlations with sea ice concentration(SIC)in the Barents and Kara Seas during the preceding autumn.Low Barents-Kara SIC is accompanied by reduced snow depth over northern Eurasia between autumn and winter,which can enhance the Eurasian mid-latitude westerly jet stream.This strengthening increases the cyclogenesis and occurrence of strong surface wind speeds in winter,especially over the TP.In addition,a lower SIC is closely associated with reduced precipitation and snow cover in late autumn and winter over the TP,which in turn enhances warming of the land surface and reduces the area of frozen ground.These anomalies in at-mospheric circulation patterns and local surface conditions promote dust events above the TP during winter.The ensemble means of Atmo-spheric Model Intercomparison Project experiments from Phase 6 of the Coupled Model Inter-comparison Project and the Community Atmosphere Model version 4 can generally reproduce the atmospheric circulation anomalies associated with decreased Barents-Kara SIC.This study reveals the crucial effect that SIC anomalies in the Barents and Kara Seas have on winter dust activities over the TP.
文献关键词:
作者姓名:
Chao XU;Jie-Hua MA;Jian-Qi SUN;Chao YOU;Yao-Ming MA;Hui-Jun WANG;Tao WANG
作者机构:
Climate Change Research Centre,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China;CMA Earth System Modeling and Prediction Centre(CEMC),China Meteorological Administration,Beijing 100081,China;Nansen-Zhu International Research Centre,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China;Key Laboratory of Meteorological Disaster(KLME),Ministry of Education&Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters(CIC-FEMD),Nanjing University of Information Science&Technology,Nanjing 210044,China;College of Environment and Ecology,Chongqing University,Chongqing 400044,China;Land-Atmosphere Interaction and Its Climatic Effects Group,State Key Laboratory of Tibetan Plateau Earth System and Resources Environment(TPESRE),Institute of Tibetan Plateau Research,Chinese Academy of Sciences,Beijing 100101,China;College of Earth and Planetary Sciences,University of Chinese Academy of Science,Beijing 100049,China;Center for Pan-third Pole Environment,Lanzhou University,Lanzhou 730000,China
引用格式:
[1]Chao XU;Jie-Hua MA;Jian-Qi SUN;Chao YOU;Yao-Ming MA;Hui-Jun WANG;Tao WANG-.Links between winter dust over the Tibetan Plateau and preceding autumn sea ice variability in the Barents and Kara Seas)[J].气候变化研究进展(英文版),2022(06):896-908
A类:
cyclogenesis,Atmo
B类:
Links,between,winter,dust,Tibetan,Plateau,preceding,autumn,sea,ice,variability,Barents,Kara,Seas,TP,characterized,by,heavily,local,activities,however,interannual,variations,frequency,remain,poorly,understood,Previous,studies,showed,Arctic,could,significantly,influence,climate,Whether,affects,activity,not,Here,integrated,surface,database,investigate,possible,mechanisms,events,above,This,which,thought,mainly,caused,emissions,shows,correlations,concentration,SIC,during,Low,accompanied,reduced,snow,depth,northern,Eurasian,mid,latitude,westerly,jet,stream,strengthening,increases,occurrence,strong,wind,speeds,especially,addition,lower,closely,associated,precipitation,cover,turn,enhances,warming,land,reduces,area,frozen,ground,These,anomalies,circulation,patterns,conditions,promote,ensemble,means,Model,Intercomparison,Project,experiments,from,Phase,Coupled,Community,Atmosphere,version,generally,reproduce,atmospheric,decreased,study,reveals,crucial,effect,that,have
AB值:
0.452159
相似文献
Influence of the NAO on Wintertime Surface Air Temperature over East Asia: Multidecadal Variability and Decadal Prediction
Jianping LI;Tiejun XIE;Xinxin TANG;Hao WANG;Cheng SUN;Juan FENG;Fei ZHENG;Ruiqiang DING-Frontiers Science Center for Deep Ocean Multispheres and Earth System-Key Laboratory of Physical Oceanography-Institute for Advanced Ocean Studies-Academy of the Future Ocean,Ocean University of China,Qingdao 266100,China;Laboratory for Ocean Dynamics and Climate,Pilot Qingdao National Laboratory for Marine Science and Technology,Qingdao 266237,China;College of Global Change and Earth System Sciences,Beijing Normal University,Beijing 100875,China;State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China;State Key Laboratory of Earth Surface Processes and Resource Ecology,Beijing Normal University,Beijing 100875,China
An Isentropic Mass Circulation View on the Extreme Cold Events in the 2020/21 Winter
Yueyue YU;Yafei LI;Rongcai REN;Ming CAI;Zhaoyong GUAN;Wei HUANG-Key Laboratory of Meteorological Disaster,Ministry of Education(KLME)/Joint International Research Laboratory of Climate and Environment Change(ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters(CIC–FEMD)/Institute for Climate and Application Research(ICAR),Nanjing University of Information Science and Technology,Nanjing 210044,China;State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics(LASG),Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China;Tianjin Meteorological Disaster Defense Technology Centre,Tianjin 300074,China;Department of Earth,Ocean& Atmospheric Sciences,Florida State University,Tallahassee,Florida 32304,USA;Key Laboratory of Mesoscale Severe Weather/Ministry of Education and School of Atmospheric Sciences,Nanjing University,Nanjing 210044,China
The Predictability of Ocean Environments that Contributed to the 2020/21 Extreme Cold Events in China: 2020/21 La Ni?a and 2020 Arctic Sea Ice Loss
Fei ZHENG;Ji-Ping LIU;Xiang-Hui FANG;Mi-Rong SONG;Chao-Yuan YANG;Yuan YUAN;Ke-Xin LI;Jiang ZHU-International Center for Climate and Environment Science(ICCES),Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China;Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters,Nanjing University of Information Science& Technology,Nanjing 210044,China;Department of Atmospheric and Environmental Sciences University at Albany,State University of New York,Albany,NY 12222,USA;Department of Atmospheric and Oceanic Sciences& Institute of Atmospheric Sciences,Fudan University,Shanghai 200438,China;State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics(LASG),Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China;School of Atmospheric Sciences,Sun Yat-sen University,Zhuhai 519082,China;National Climate Center,Beijing 100081,China;University of Chinese Academy of Sciences,Beijing 100049,China9Beijing Municipal Climate Center,Beijing 100089,China
Understanding Third Pole Atmospheric Dynamics and Land Surface Processes and Their Associations with the Cryosphere, Air Quality, and Climate Change—Preface to the Special Issue on Third Pole Atmospheric Physics, Chemistry, and Hydrology
Yun Qian;Hailong Wang;Chuanfeng Zhao;Chun Zhao;Siyu Chen;Xiao-Ming Hu;and Shichang Kang-Pacific Northwest National Laboratory,Richland,WA 99354,USA;College of Global Change and Earth System Science,Beijing Normal University,Beijing 100875,China;School of Earth and Space Sciences,University of Science and Technology of China,Hefei 230026,China;College of Atmospheric Sciences,Lanzhou University,Lanzhou 730000,China;Center for Analysis and Prediction of Storms,University of Oklahoma,Norman 73019,OK,USA;State Key Laboratory of Cryospheric Science,Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences(CAS),Lanzhou 730000,China
Simulating Aerosol Optical Depth and Direct Radiative Effects over the Tibetan Plateau with a High-Resolution CAS FGOALS-f3 Model
Min ZHAO;Tie DAI;Hao WANG;Qing BAO;Yimin LIU;Hua ZHANG;Guangyu SHI-State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China;Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters,Nanjing University of Information Science and Technology,Nanjing 210044,China;University of Chinese Academy of Sciences,Beijing 100049,China;International Center for Climate and Environment Science,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China;State Key Laboratory of Severe Weather,Chinese Academy of Meteorological Sciences,Beijing 100081,China
Atmospheric particle-bound mercury in the northern Indo-Gangetic Plain region:Insights into sources from mercury isotope analysis and influencing factors
Junming Guo;Lekhendra Tripathee;Shichang Kang;Qianggong Zhang;Jie Huang;Chhatra Mani Sharma;Pengfei Chen;Rukumesh Paudyal;Dipesh Rupakheti-State Key Laboratory of Cryospheric Science,Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,China;Himalayan Environment Research Institute (HERI),Kathmandu,Nepal;Center for Excellence in Tibetan Plateau Earth Sciences,Chinese Academy of Sciences,Beijing 100085,China;University of Chinese Academy of Sciences,Beijing 100039,China;Key Laboratory of Tibetan Environment Changes and Land Surface Processes,Institute of Tibetan Plateau Research,Chinese Academy of Sciences,Beijing 100101,China;Central Department of Environmental Science,Tribhuvan University,Kathmandu,Nepal
Evaluation and comparison of CMIP6 models and MERRA-2 reanalysis AOD against Satellite observations from 2000 to 2014 over China
Arfan Ali;Muhammad Bilal;Yu Wang;Zhongfeng Qiu;Janet E.Nichol;Gerrit de Leeuw;Song Ke;Alaa Mhawish;Mansour Almazroui;Usman Mazhar;Birhanu Asmerom Habtemicheal;M.Nazrul Islam-Lab of Environmental Remote Sensing(LERS),School of Marine Sciences,Nanjing University of Information Science and Technology,Nanjing 210044,China;Department of Geography,School of Global Studies,University of Sussex,Brighton BN19RH,UK;Royal Netherlands Meteorological Institute(KNMI),R&D Satellite Observations,3730AE De Bilt,The Netherlands;School of Atmospheric Physics,Nanjing University of Information Science and Technology,Nanjing 210044,China;Aerospace Information Research Institute,Chinese Academy of Sciences(AirCAS),No.20 Datun Road,Chaoyang District,Beijing 100101,China;School of Environment Science and Spatial Informatics,University of Mining and Technology,Xuzhou,Jiangsu 221116,China;Geological Survey of Jiangsu Province,Nanjing 210018,China;Center of Excellence for Climate Change Research/Department of Meteorology,King Abdulaziz University,Jeddah 21589,Saudi Arabia;Climatic Research Unit,School of Environmental Sciences,University of East Anglia,Norwich,UK;School of Remote Sensing and Geomatics Engineering,Nanjing University of Information Science and Technology,Nanjing 210044,China;Department of Physics,Wollo University,Dessie P.O.Box 1145,Ethiopia
Responses of Arctic sea ice to stratospheric ozone depletion
Jiankai Zhang;Wenshou Tian;John A.Pyle;James Keeble;Nathan Luke Abraham;Martyn P.Chipperfield;Fei Xie;Qinghua Yang;Longjiang Mu;Hong-Li Ren;Lin Wang;Mian Xu-College of Atmospheric Sciences,Lanzhou University,Lanzhou 730000,China;Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai),Zhuhai 519082,China;Department of Chemistry,University of Cambridge,Cambridge CB2 1EW,UK;National Centre for Atmospheric Science,Cambridge CB2 1EW,UK;School of Earth and Environment,University of Leeds,Leeds LS2 9JT,UK;College of Global Change and Earth System Science,Beijing Normal University,Beijing 100875,China;School of Atmospheric Sciences,Sun Yat-sen University,Zhuhai 519082,China;Pilot National Laboratory for Marine Science and Technology(Qingdao),Qingdao 266237,China;State Key Laboratory of Severe Weather,Institute of Tibetan Plateau&Polar Meteorology,Chinese Academy of Meteorological Sciences,Beijing 100081,China;Center for Monsoon System Research,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。