首站-论文投稿智能助手
典型文献
Dehydroabietic acid chemosensitizes drug-resistant acute lymphoblastic leukemia cells by downregulating survivin expression
文献摘要:
Objective: To explore the mechanism of drug resistance in acute lymphoblastic leukemia and the anti-tumor effect of combination therapy of dehydroabietic acid and vincristine against acute lymphoblastic leukemia cells. Methods: Acute lymphoblastic leukemia cells REH and CCRF-CEM were employed to detect the anti-tumor effect of vincristine and doxorubicin on proliferation and apoptosis using EdU assay, human active caspase-3 Quantikine ELISA kit, and lfow cytometry. Vincristine-resistant REH cells (REH-R), survivin knockdown and overexpressing REH cells were established to verify the role of survivin in drug resistance. Additionally, in vitro and in vivo assays were performed to determine the effect of dehydroabietic acid on the cytotoxicity of vincristine. Results: Vincristine and doxorubicin markedly suppressed proliferation and induced apoptosis of REH and CCRF-CEM cells. Survivin expression was upregulated in REH-R cells compared with REH cells. Knockdown of survivin expression obviously restored the sensitivity of REH-R cells to vincristine. Akt phosphorylation was also increased in REH-R cells compared to REH cells. In addition, LY294002, a PI3k/Akt pathway blocker, inhibited survivin expression and enhanced cytotoxicity of vincristine to REH-R cells. Dehydroabietic acid effectively reduced survivin expression in REH-R cells, thereby enhancing the therapeutic effect of vincristine on drug-resistant cells. Survivin overexpression markedly reduced the effect of dehydroabietic acid on enhancing the anti-proliferation and inducing apoptosis effect of vincristine. Moreover, the combination of dehydroabietic acid with vincristine significantly extended the survival rate in a mouse xenograft model of acute lymphoblastic leukemia, compared with vincristine treatment alone. Conclusions: Dehydroabietic acid may be used as a potential candidate for the treatment of acute lymphoblastic leukemia in combination with vincristine.
文献关键词:
作者姓名:
Li-Li Shen;Wei-Hua Huang;Hui-Jun Zhao;Xue-Wei Yuan
作者机构:
Department of Pediatrics,Suzhou Kowloon Hospital,Shanghai Jiao Tong University School of Medicine,Suzhou,Jiangsu,China
引用格式:
[1]Li-Li Shen;Wei-Hua Huang;Hui-Jun Zhao;Xue-Wei Yuan-.Dehydroabietic acid chemosensitizes drug-resistant acute lymphoblastic leukemia cells by downregulating survivin expression)[J].亚太热带生物医学杂志(英文版),2022(09):383-390
A类:
Dehydroabietic,chemosensitizes,dehydroabietic,Quantikine,lfow,Vincristine
B类:
acid,drug,resistant,acute,lymphoblastic,leukemia,cells,downregulating,survivin,Objective,To,explore,mechanism,resistance,tumor,combination,therapy,vincristine,against,Methods,Acute,REH,CCRF,CEM,were,employed,detect,doxorubicin,proliferation,apoptosis,using,EdU,human,active,caspase,kit,cytometry,knockdown,overexpressing,established,verify,role,Additionally,vitro,vivo,assays,performed,determine,cytotoxicity,Results,markedly,suppressed,induced,Survivin,was,upregulated,compared,Knockdown,obviously,restored,sensitivity,Akt,phosphorylation,also,increased,In,addition,LY294002,PI3k,pathway,blocker,inhibited,enhanced,effectively,reduced,thereby,enhancing,therapeutic,overexpression,inducing,Moreover,significantly,extended,survival,rate,mouse,xenograft,model,treatment,alone,Conclusions,may,be,used,potential,candidate
AB值:
0.369969
相似文献
CircRNA.0007127 triggers apoptosis through the miR-513a-5p/CASP8 axis in K-562 cells
Xiajing LI;Yiyu ZHANG;Ning WANG;Zhaohu YUAN;Xiaojie CHEN;Qicong CHEN;Hui DENG;Xinxin TONG;Honglin CHEN;Yuyou DUAN;Yarning WEI-School of Medicine,South China University of Technology,Guangzhou 510000,China;Department of Blood Transfusion,Shenzhen Longhua Central Hospital,Shenzhen 518000,China;Laboratory of Stem Cells and Translational Medicine,Institutes for Life Sciences,School of Medicine,South China University of Technology,Guangzhou 510000,China;School of Biomedical Sciences and Engineering,Guangzhou International Campus,South China University of Technology,Guangzhou 510000,China;Department of Blood Transfusion,the Second Affiliation Hospital of South China University of Technology,Guangzhou 510000,China;Guangdong Engineering Research Center of Precise Transfusion,Guangzhou 510000,China
Overexpressed NEDD8 as a potential therapeutic target in esophageal squamous cell carcinoma
Jingrong Xian;Shiwen Wang;Yanyu Jiang;Lihui Li;Lili Cai;Ping Chen;Yue Liu;Xiaofei Zeng;Guoan Chen;Chen Ding;Robert M.Hoffman;Lijun Jia;Hu Zhao;Yanmei Zhang-Department of Laboratory Medicine,Huadong Hospital Affiliated to Fudan University,Shanghai 200040,China;Cancer Institute,Longhua Hospital,Shanghai University of Traditional Chinese Medicine,Shanghai 200032,China;Research Center on Aging and Medicine,Fudan University,Shanghai 200040,China;Shanghai Key Laboratory of Clinical Geriatric Medicine,Shanghai 200040,China;Department of Basic Science of Oncology,College of Basic Medical Sciences,Zhengzhou University,Collaborative Innovation Center of Henan Province for Cancer Chemoprevention,Zhengzhou 450001,China;School of Medicine,Southern University of Science and Technology,Shenzhen 518055,China;State Key Laboratory of Genetic Engineering,Human Phenome Institute,Institutes of Biomedical Sciences,School of Life Sciences,Zhongshan Hospital,Fudan University,Shanghai 200032,China;State Key Laboratory of Cell Differentiation and Regulation,Henan International Joint Laboratory of Pulmonary Fibrosis,Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis,College of Life Science,Institute of Biomedical Science,Henan Normal University,Xinxiang 453007,China;Department of Surgery,University of California,San Diego 92101,USA;Anticancer Inc.,San Diego 92101,USA
JaponiconeA induces apoptosis of bortezomib-sensitive and -resistant myeloma cells in vitro and in vivo by targeting IKK β
Zilu Zhang;Chenjing Ye;Jia Liu;Wenbin Xu;Chao Wu;Qing Yu;Xiaoguang Xu;Xinyi Zeng;Huizi Jin;Yingli Wu;Hua Yan-Shanghai Institute of Hematology,Affiliated Ruijin Hospital of Shanghai Jiao Tong University School of Medicine,Shanghai 200025,China;VIP Health Center,Affiliated Ruijin Hospital of Shanghai Jiao Tong University School of Medicine,Shanghai 200025,China;Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs,School of Pharmacy,Shanghai Jiao Tong University,Shanghai 200240,China;Hongqiao International Institute of Medicine,Shanghai Tongren Hospital/Faculty of Basic Medicine,Chemical Biology Division of Shanghai Universities E-Institutes,Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education,Shanghai Jiao Tong University School of Medicine,Shanghai 200025,China
IL13Rα1 prevents a castration resistant phenotype of prostate cancer by targeting hexokinase 2 for ubiquitin-mediated degradation
Tingting Feng;Jing Wang;Kai Cheng;Qiqi Lu;Ru Zhao;Shiguan Wang;Qingyun Zhang;Luna Ge;Jihong Pan;Guanhua Song;Lin Wang-Department of Pathology,School of Basic Medical Sciences,Shandong University,Jinan 250012,China;Department of Pathology,The Fourth People's Hospital of Jinan,Jinan 250031,China;Department of PET-CT,Shandong Cancer Hospital and Institute,Shandong First Medical University and Shandong Academy of Medical Sciences,Jinan 250002,China;The Second Hospital,Cheeloo College of Medicine,Shandong University Medical School,Jinan 250012,China;Biomedical Sciences College&Shandong Medicinal Biotechnology Centre,Key Lab for Biotech-Drugs of National Health Commission,Key Lab for Rare&Uncommon Diseases of Shandong Province,Shandong First Medical University&Shandong Academy of Medical Sciences,Jinan 250002,China;Department of Biochemistry and Molecular Biology,Shandong University School of Basic Medical Sciences,Jinan 250012,China;Institute of Basic Medicine,Shandong Academy of Medical Sciences,Shandong First Medical University&Shandong Academy of Medical Sciences,Jinan 250002,China;Department of Oncology,The First Affiliated Hospital of Shandong First Medical University,Jinan 250014,China
Loss of NEIL3 activates radiotherapy resistance in the progression of prostate cancer
Qiong Wang;Zean Li;Jin Yang;Shirong Peng;Qianghua Zhou;Kai Yao;Wenli Cai;Zhongqiu Xie;Fujun Qin;Hui Li;Xu Chen;Kaiwen Li;Hai Huang-Department of Urology,Sun Yat-sen Memorial Hospital,Sun Yat-sen University,Guangzhou 510120,China;Department of Pathology,School of Medicine,University of Virginia,Charlottesville,VA 22908,USA;Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation,Sun Yat-sen Memorial Hospital,Sun Yat-sen University,Guangzhou 510120,China;Department of Radiation Oncology,Sun Yat-sen Memorial Hospital,Sun Yat-sen University,Guangzhou 510120,China;Department of Urology,Sun Yat-sen University Cancer Center,Guangzhou 510060,China;Department of Radiology,Massachusetts General Hospital,Harvard Medical School,Boston,MA 02114,USA;Department of Urology,The Sixth Affiliated Hospital of Guangzhou Medical University,Qingyuan People's Hospital,Qingyuan 511518,China
Taxifolin attenuates inflammation via suppressing MAPK signal pathway in vitro and in silico analysis
Xingyan Zhang;Xiaoyan Lian;Huling Li;Wenjing Zhao;Xin Li;Fujun Zhou;Yutong Zhou;Tao Cui;Yuli Wang;Changxiao Liu-Key Laboratory of Quality-marker of Traditional Chinese Medicines,Tianjin Institute of Pharmaceutical Research Co.,Ltd.,Tianjin 300462,China;Center for Drug Evaluation,National Medical Products Administration,Beijing 100022,China;Department of Pharmacology,Tianjin Medical University,Tianjin 300070,China;State Key Laboratory of Drug Delivery Technology and Pharmacokinetics,Tianjin Institute of Pharmaceutical Research Co.,Ltd.,Tianjin 300462,China;Key Laboratory of Systems Bioengineering(Ministry of Education),School of Chemistry Engineering and Technology,Tianjin University,Tianjin 300072,China;Pharmaceuticai Armaceuticai DA REN TANG Group Corporation Limited Traditional Chinese Pharmacy Researchinstitute,Tianjin 300457,China;Tianjin Key Laboratory of Quality Control in Chinese Medicine,Tianjin 300457,China;Research Unit for Drug Metabolism,Chinese Academy of Medical Sciences,Beijing 100730,China
Novel dual inhibitor for targeting PIM1 and FGFR1 kinases inhibits colorectal cancer growth in vitro and patient-derived xenografts in vivo
Fanxiang Yin;Ran Zhao;Dhilli Rao Gorja;Xiaorong Fu;Ning Lu;Hai Huang;Beibei Xu;Hanyong Chen;Jung-Hyun Shim;Kangdong Liu;Zhi Li;Kyle Vaughn Laster;Zigang Dong;Mee-Hyun Lee-Department of Pathophysiology,School of Basic Medical Sciences,Zhengzhou University,Zhengzhou 450001,China;China-US(Henan)Hormel Cancer Institute,Zhengzhou 450008,China;Translational Medical Center,the First Affiliated Hospital of Zhengzhou University,Zhengzhou 450052,China;The Hormel Institute,University of Minnesota,Austin,MN 55912,USA;Department of Biomedicine,Health&Life Convergencen Science,BK21 Four,College of Pharmacy,Mokpo National University,Jeonnam 58554,Republic of Korea;The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention,Zhengzhou 450001,China;Department of General Surgery,the Affiliated Tumor Hospital of Zhengzhou University,Zhengzhou 450008,China;College of Korean Medicine,Dongshin University,Naju 58245,Republic of Korea
Sulforaphane ameliorates non-alcoholic fatty liver disease in mice by promoting FGF21/FGFR1 signaling pathway
Yi-kuan Wu;Zheng-nan Ren;Sheng-long Zhu;Yun-zhou Wu;Gang Wang;Hao Zhang;Wei Chen;Zhao He;Xian-long Ye;Qi-xiao Zhai-State Key Laboratory of Food Science and Technology,Jiangnan University,Wuxi 214122,China;School of Food Science and Technology,Jiangnan University,Wuxi 214122,China;School of Medicine,Jiangnan University,Wuxi 214122,China;College of Life Science,Northeast Agricultural University,Harbin 150038,China;National Engineering Research Center for Functional Food,Jiangnan University,Wuxi 214122,China;Shandong Key Laboratory of Endocrinology and Lipid Metabolism,Jinan 250021,China;School of Medicine,Shandong University,Jinan 250012,China;Ganjiang Chinese Medicine Innovation Center,Nanchang 330000,China
NFAT inhibitor 11R-VIVIT ameliorates mouse renal fibrosis after ischemia-reperfusion-induced acute kidney injury
Zhi-yong Xie;Wei Dong;Li Zhang;Meng-jie Wang;Zhen-meng Xiao;Yu-hua Zhang;Wan-xin Shi;Ying Huang;Yan Yang;Cui-li Li;Lei Fu;Xing-chen Zhao;Rui-zhao Li;Zhi-lian Li;Yuan-han Chen;Zhi-ming Ye;Shuang-xin Liu;Zheng Dong;Xin-ling Liang-The Second School of Clinical Medicine,Southern Medical University,Guangzhou 510515,China;Division of Nephrology,Guangdong Provincial People's Hospital,Guangdong Academy of Medical Sciences,Guangzhou 510080,China;School of Medicine,South China University of Technology,Guangzhou 510006,China;Department of Cellular Biology and Anatomy,Medical College of Georgia at Augusta University,Augusta,GA,USA;Department of Medical Research,Charlie Norwood Veterans Affairs Medical Center,Augusta,GA,USA
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。