首站-论文投稿智能助手
典型文献
BLM helicase inhibition synergizes with PARP inhibition to improve the radiosensitivity of olaparib resistant non-small cell lung cancer cells by inhibiting homologous recombination repair
文献摘要:
Objective: We aimed to investigate the radiosensitizing efficacy of the poly-ADP-ribose polymerase (PARP) inhibitor, olaparib, and the Bloom syndrome protein (BLM) helicase inhibitor, ML216, in non-small cell lung cancer (NSCLC) cells. Methods: Radiosensitization of NSCLC cells was assessed by colony formation and tumor growth assays. Mechanistically, the effects of ML216, olaparib, and radiation on cell and tumor proliferation, DNA damage, cell cycle, apoptosis, homologous recombination (HR) repair, and non-homologous end joining (NHEJ) repair activity were determined. Results: Both olaparib and ML216 enhanced the radiosensitivities of olaparib-sensitive H460 and H1299 cells, which was seen as decreased surviving fractions and Rad51 foci, increased total DNA damage, and γH2AX and 53BP1 foci (P < 0.05). The expressions of HR repair proteins were remarkably decreased in olaparib-treated H460 and H1299 cells after irradiation (P < 0.05), while olaparib combined with ML216 exerted a synergistic radiosensitization effect on olaparib-resistant A549 cells. In addition to increases of double strand break (DSB) damage and decreases of Rad51 foci, olaparib combined with ML216 also increased pDNA-PKcs (S2056) foci, abrogated G2 cell cycle arrest, and induced apoptosis in A549 lung cancer after irradiation in vitro and in vivo (P < 0.05). Moreover, Western blot showed that olaparib combined with ML216 and irradiation inhibited HR repair, promoted NHEJ repair, and inactivated cell cycle checkpoint signals both in vitro and in vivo (P < 0.05). Conclusions: Taken together, these results showed the efficacy of PARP and BLM helicase inhibitors for radiosensitizing NSCLC cells, and supported the model that BLM inhibition sensitizes cells to PARP inhibitor-mediated radiosensitization, as well as providing the basis for the potential clinical development of this combination for tumors intrinsically resistant to PARP inhibitors and radiotherapy.
文献关键词:
作者姓名:
Yangyang Kong;Chang Xu;Xiaohui Sun;Hao Sun;Xiaotong Zhao;Ningning He;Kaihua Ji;Qin Wang;Liqing Du;Jinhan Wang;Manman Zhang;Yang Liu;Yan Wang;Qiang Liu
作者机构:
Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine,Institute of Radiation Medicine,Chinese Academy of Medical Sciences&Peking Union Medical College,Tianjin 300192,China
引用格式:
[1]Yangyang Kong;Chang Xu;Xiaohui Sun;Hao Sun;Xiaotong Zhao;Ningning He;Kaihua Ji;Qin Wang;Liqing Du;Jinhan Wang;Manman Zhang;Yang Liu;Yan Wang;Qiang Liu-.BLM helicase inhibition synergizes with PARP inhibition to improve the radiosensitivity of olaparib resistant non-small cell lung cancer cells by inhibiting homologous recombination repair)[J].癌症生物学与医学(英文版),2022(08):1150-1171
A类:
olaparib,radiosensitizing,ML216,Radiosensitization,radiosensitivities,S2056
B类:
BLM,helicase,inhibition,synergizes,PARP,improve,radiosensitivity,resistant,small,lung,cancer,cells,by,inhibiting,homologous,recombination,repair,Objective,aimed,investigate,efficacy,ADP,ribose,polymerase,Bloom,syndrome,NSCLC,Methods,was,assessed,colony,formation,growth,assays,Mechanistically,effects,proliferation,damage,cycle,apoptosis,end,joining,NHEJ,activity,were,determined,Results,Both,enhanced,sensitive,H460,H1299,which,seen,decreased,surviving,fractions,Rad51,foci,increased,total,H2AX,53BP1,expressions,proteins,remarkably,treated,after,irradiation,while,combined,exerted,synergistic,radiosensitization,A549,In,addition,increases,double,strand,break,DSB,decreases,also,pDNA,PKcs,abrogated,G2,arrest,induced,vitro,vivo,Moreover,blot,showed,that,inhibited,promoted,inactivated,checkpoint,signals,both,Conclusions,Taken,together,these,results,inhibitors,supported,model,sensitizes,mediated,well,providing,basis,potential,clinical,development,this,tumors,intrinsically,radiotherapy
AB值:
0.455119
相似文献
CircRNA.0007127 triggers apoptosis through the miR-513a-5p/CASP8 axis in K-562 cells
Xiajing LI;Yiyu ZHANG;Ning WANG;Zhaohu YUAN;Xiaojie CHEN;Qicong CHEN;Hui DENG;Xinxin TONG;Honglin CHEN;Yuyou DUAN;Yarning WEI-School of Medicine,South China University of Technology,Guangzhou 510000,China;Department of Blood Transfusion,Shenzhen Longhua Central Hospital,Shenzhen 518000,China;Laboratory of Stem Cells and Translational Medicine,Institutes for Life Sciences,School of Medicine,South China University of Technology,Guangzhou 510000,China;School of Biomedical Sciences and Engineering,Guangzhou International Campus,South China University of Technology,Guangzhou 510000,China;Department of Blood Transfusion,the Second Affiliation Hospital of South China University of Technology,Guangzhou 510000,China;Guangdong Engineering Research Center of Precise Transfusion,Guangzhou 510000,China
Autophagy, not apoptosis, plays a role in lumen formation of eccrine gland organoids
Du Lijie;Zhang Lei;Zhao Junhong;Chen Zixiu;Liu Xiang;Cao Manxiu;You Lei;Zhang Yonghong;Fu Xiaobing;Li Haihong-Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China;Hubei Clinical Medical Research Center of Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China;Mental Health Center, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China;School of Basic Medicine, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, Hubei 442000, China;Wound Healing and Cell Biology Laboratory, The First Affiliated Hospital, Chinese PLA General Hospital, Beijing 100048, China
Novel dual inhibitor for targeting PIM1 and FGFR1 kinases inhibits colorectal cancer growth in vitro and patient-derived xenografts in vivo
Fanxiang Yin;Ran Zhao;Dhilli Rao Gorja;Xiaorong Fu;Ning Lu;Hai Huang;Beibei Xu;Hanyong Chen;Jung-Hyun Shim;Kangdong Liu;Zhi Li;Kyle Vaughn Laster;Zigang Dong;Mee-Hyun Lee-Department of Pathophysiology,School of Basic Medical Sciences,Zhengzhou University,Zhengzhou 450001,China;China-US(Henan)Hormel Cancer Institute,Zhengzhou 450008,China;Translational Medical Center,the First Affiliated Hospital of Zhengzhou University,Zhengzhou 450052,China;The Hormel Institute,University of Minnesota,Austin,MN 55912,USA;Department of Biomedicine,Health&Life Convergencen Science,BK21 Four,College of Pharmacy,Mokpo National University,Jeonnam 58554,Republic of Korea;The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention,Zhengzhou 450001,China;Department of General Surgery,the Affiliated Tumor Hospital of Zhengzhou University,Zhengzhou 450008,China;College of Korean Medicine,Dongshin University,Naju 58245,Republic of Korea
Pharmacodynamic,pharmacokinetic,and phase 1a study of bisthianostat,a novel histone deacetylase inhibitor,for the treatment of relapsed or refractory multiple myeloma
Yu-bo Zhou;Yang-ming Zhang;Hong-hui Huang;Li-jing Shen;Xiao-feng Han;Xiao-bei Hu;Song-da Yu;An-hui Gao;Li Sheng;Ming-bo Su;Xiao-li Wei;Yue Zhang;Yi-fan Zhang;Zhi-wei Gao;Xiao-yan Chen;Fa-jun Nan;Jia Li;Jian Hou-National Center for New Drug Screening,State Key Laboratory of Drug Research,Shanghai Institute of Materia Medica,Chinese Academy of Sciences,Shanghai 201203,China;University of Chinese Academy of Sciences,Beijing 100049,China;Yantai Key Laboratory of Nanomedicine&Advanced Preparations,Yantai Institute of Materia Medica,Yantai 264000,China;Department of Hematology,Renji Hospital,Shanghai Jiaotong University School of Medicine,Shanghai 200127,China;Shanghai Center for Drug Metabolism and Pharmacokinetics Research,Shanghai 201203,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。