首站-论文投稿智能助手
典型文献
Hardy Spaces Associated with Ball Quasi-Banach Function Spaces on Spaces of Homogeneous Type:Littlewood-Paley Characterizations with Applications to Boundedness of Calderón-Zygmund Operators
文献摘要:
Let(x,ρ,μ)be a space of homogeneous type in the sense of Coifman and Weiss,and Y(x)a ball quasi-Banach function space on x,which supports both a Fefferman-Stein vector-valued maximal inequality and the boundedness of the powered Hardy-Littlewood maximal operator on its associate space.The authors first introduce the Hardy space HY(x)associated with Y(x),via the Lusin-area function,and then establish its various equivalent characterizations,respectively,in terms of atoms,molecules,and Littlewood-Paley g-functions and gλ*-functions.As an application,the authors obtain the boundedness of Calderón-Zygmund operators from HY(x)to Y(x),or to HY(x)via first establishing a boundedness criterion of linear operators on HY(x).All these results have a wide range of generality and,particularly,even when they are applied to variable Hardy spaces,the obtained results are also new.The major novelties of this article exist in that,to escape the reverse doubling condition of u and the triangle inequality of p,the authors subtly use the wavelet reproducing formula,originally establish an admissible molecular characterization of HY(x),and fully apply the geometrical properties of X expressed by dyadic reference points or dyadic cubes.
文献关键词:
作者姓名:
Xian Jie YAN;Zi Yi HE;Da Chun YANG;Wen YUAN
作者机构:
Laboratory of Mathematics and Complex Systems(Ministry of Education of China),School of Mathematical Sciences,Beijing Normal University,Beijing 100875,P.R.China;School of Science,Beijing University of Posts and Telecommunications,Beijing 100876,P.R.China
引用格式:
[1]Xian Jie YAN;Zi Yi HE;Da Chun YANG;Wen YUAN-.Hardy Spaces Associated with Ball Quasi-Banach Function Spaces on Spaces of Homogeneous Type:Littlewood-Paley Characterizations with Applications to Boundedness of Calderón-Zygmund Operators)[J].数学学报(英文版),2022(07):1133-1184
A类:
Coifman,Fefferman,Lusin,novelties
B类:
Hardy,Spaces,Associated,Ball,Quasi,Banach,Function,Homogeneous,Type,Littlewood,Paley,Characterizations,Applications,Boundedness,Calder,Zygmund,Operators,Let,homogeneous,type,sense,Weiss,ball,quasi,which,supports,both,Stein,vector,valued,maximal,inequality,boundedness,powered,its,authors,first,introduce,HY,associated,via,area,then,various,equivalent,characterizations,respectively,terms,atoms,molecules,functions,application,operators,from,establishing,criterion,linear,All,these,results,have,wide,range,generality,particularly,even,when,they,applied,variable,spaces,obtained,also,new,major,this,article,exist,that,escape,reverse,doubling,condition,triangle,subtly,use,wavelet,reproducing,formula,originally,admissible,molecular,fully,apply,geometrical,properties,expressed,by,dyadic,reference,points,cubes
AB值:
0.57625
相似文献
FAST Observations of an Extremely Active Episode of FRB 20201124A.Ⅱ.Energy Distribution
Yong-Kun Zhang;Pei Wang;Yi Feng;Bing Zhang;Di Li;Chao-Wei Tsai;Chen-Hui Niu;Rui Luo;Ju-Mei Yao;Wei-Wei Zhu;Jin-Lin Han;Ke-Jia Lee;De-Jiang Zhou;Jia-Rui Niu;Jin-Chen Jiang;Wei-Yang Wang;Chun-Feng Zhang;Heng Xu;Bo-Jun Wang;Jiang-Wei Xu-National Astronomical Observatories,Chinese Academy of Sciences,Beijing 100101,China;University of Chinese Academy of Sciences,Beijing 100049,China;Research Center for Intelligent Computing Platforms,Zhejiang Laboratory,Hangzhou 311100,China;Department of Physics and Astronomy,University of Nevada,Las Vegas,NV 89154,USA;Nevada Center for Astrophysics,University of Nevada,Las Vegas,NV 89154,USA;NAOC-UKZN Computational Astrophysics Centre,University of KwaZulu-Natal,Durban 4000,South Africa;CSIRO Space and Astronomy,PO Box 76,Epping,NSW 1710,Australia;Xinjiang Astronomical Observatory,Chinese Academy of Sciences,Urumqi 830011,China;Kavli Institute for Astronomy and Astrophysics,Peking University,Beijing 100871,China;Department of Astronomy,Peking University,Beijing 100871,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。