典型文献
On Mixed Pressure-Velocity Regularity Criteria to the Navier-stokes Equations in Lorentz Spaces,Part Ⅱ:The Non-slip Boundary Value Problem
文献摘要:
This paper is a continuation of the authors recent work[Beir(a)o da Veiga,H.and Yang,J.,On mixed pressure-velocity regularity criteria to the Navier-Stokes equations in Lorentz spaces,Chin.Ann.Math.,42(1),2021,1-16],in which mixed pressure-velocity criteria in Lorentz spaces for Leray-Hopf weak solutions of the three-dimensional Navier-Stokes equations,in the whole space R3 and in the periodic torus T3,are established.The purpose of the present work is to extend the result of mentioned above to smooth,bounded domains Ω,under the non-slip boundary condition.Let πr denote the fluid pressure and v the fluid velocity.It is shown that if π/(1+|v|θ) ∈ Lp(0,T;Lq,∞(Ω)),where 0 ≤ θ ≤ 1,and 2/p + 3/q =2-θ with p ≥ 2,then v is regular on Ω× (0,T].
文献关键词:
中图分类号:
作者姓名:
Hugo BEIR(A)O DA VEIGA;Jiaqi YANG
作者机构:
Department of Mathematics,Pisa University,Pisa,Italy;School of Mathematics and Statistics,Northwestern Polytechnical University,Xi'an 710129,China
文献出处:
引用格式:
[1]Hugo BEIR(A)O DA VEIGA;Jiaqi YANG-.On Mixed Pressure-Velocity Regularity Criteria to the Navier-stokes Equations in Lorentz Spaces,Part Ⅱ:The Non-slip Boundary Value Problem)[J].数学年刊B辑(英文版),2022(01):51-58
A类:
Beir,Veiga
B类:
On,Mixed,Pressure,Velocity,Regularity,Criteria,Navier,stokes,Equations,Lorentz,Spaces,Part,Non,slip,Boundary,Value,Problem,This,paper,continuation,authors,recent,work,Yang,mixed,pressure,velocity,regularity,criteria,Stokes,equations,spaces,Chin,Ann,Math,which,Leray,Hopf,weak,solutions,three,dimensional,whole,R3,periodic,torus,are,established,purpose,present,extend,result,mentioned,above,smooth,bounded,domains,under,boundary,condition,Let,denote,fluid,It,shown,that,if,1+,Lp,Lq,where,then
AB值:
0.639474
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。