首站-论文投稿智能助手
典型文献
Best Proximity Point Theorems for p-Proximal α-η-β-Quasi Contractions in Metric Spaces with w0-Distance
文献摘要:
In this paper,we propose a new class of non-self mappings called p-proximal α-η-β-quasi contraction,and introduce the concepts of α-proximal admissible mapping with respect to η and (α,d) regular mapping with respect to η.Based on these new notions,we study the existence and uniqueness of best proximity point for this kind of new contractions in metric spaces with wo-distance and obtain a new theorem,which generalize and complement the results in[Ayari,M.I.et al.Fixed Point Theory Appl.,2017,2017:16]and[Ayari,M.I.et al.Fixed Point Theory Appl.,2019,2019:7].We give an example to show the validity of our main result.Moreover,we obtain several consequences concerning about best proximity point and common fixed point results for two mappings,and we present an application of a corollary to discuss the solutions to a class of systems of Volterra type integral equations.
文献关键词:
作者姓名:
Mengdi LIU;Zhaoqi WU;Chuanxi ZHU;Chenggui YUAN
作者机构:
Department of Mathematics,Nanchang University,Jiangxi 330031,P.R.China;Department of Mathematics,Swansea University,Singleton Park SA28PP,UK
文献出处:
引用格式:
[1]Mengdi LIU;Zhaoqi WU;Chuanxi ZHU;Chenggui YUAN-.Best Proximity Point Theorems for p-Proximal α-η-β-Quasi Contractions in Metric Spaces with w0-Distance)[J].数学研究及应用,2022(01):95-110
A类:
Contractions,Ayari
B类:
Best,Proximity,Point,Theorems,Proximal,Quasi,Metric,Spaces,w0,Distance,In,this,paper,we,propose,new,class,self,mappings,called,proximal,quasi,introduce,concepts,admissible,respect,regular,Based,these,notions,study,existence,uniqueness,best,proximity,point,kind,contractions,metric,spaces,distance,obtain,theorem,which,generalize,complement,results,Fixed,Theory,Appl,We,give,example,show,validity,our,main,Moreover,several,consequences,concerning,about,common,fixed,two,present,application,corollary,discuss,solutions,systems,Volterra,type,integral,equations
AB值:
0.596789
相似文献
Evidence for Magnetic Fractional Excitations in a Kitaev Quantum-Spin-Liquid Candidate α-RuCl3
Kejing Ran;Jinghui Wang;Song Bao;Zhengwei Cai;Yanyan Shangguan;Zhen Ma;Wei Wang;Zhao-Yang Dong;P.(C)ermák;A.Schneidewind;Siqin Meng;Zhilun Lu;Shun-Li Yu;Jian-Xin Li;Jinsheng Wen-School of Physical Science and Technology,and ShanghaiTech Laboratory for Topological Physics,ShanghaiTech University,Shanghai 200031,China;National Laboratory of Solid State Microstructures and Department of Physics,Nanjing University,Nanjing 210093,China;Institute for Advanced Materials,Hubei Normal University,Huangshi 435002,China;School of Science,Nanjing University of Posts and Telecommunications,Nanjing 210023,China;Department of Applied Physics,Nanjing University of Science and Technology,Nanjing 210094,China;Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ),Forschungszentrum Jülich GmbH,Lichtenbergstr.1,85748 Garching,Germany;Charles University,Faculty of Mathematics and Physics,Department of Condensed Matter Physics,Ke Karlovu 5,12116,Praha,Czech Republic;Helmholtz-Zentrum Berlin für Materialien und Energie GmbH,Hahn-Meitner-Platz 1D-14109,Berlin,Germany;China Institute of Atomic Energy (CIAE),Beijing 102413,China;The Henry Royce Institute and Department of Materials Science and Engineering,The University of Sheffield,Sir Robert Hadfield Building,Sheffield,S13JD,United Kingdom;Collaborative Innovation Center of Advanced Microstructures,Nanjing University,Nanjing 210093,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。