首站-论文投稿智能助手
典型文献
Simultaneously Improved Dielectric Constant and Breakdown Strength of PVDF-based Composites with Polypyrrole Nanowire Encapsuled Molybdenum Disulfide Nanosheets
文献摘要:
High-performance dielectric polymer composites have received increasing attention due to their important applications in the field of energy storage.The rational structural design of hybrid fillers can lead to a balance between high dielectric constant and insulation in composites.In this work,novel hybrid fillers were fabricated by in situ synthesizing one-dimensional polypyrrole nanowires(PPynws)on the two-dimensional molybdenum disulfide(MoS2),which integrated the good ion polarization ability of PPynws and the high insulation and adjustable band gap of MoS2.Compared with the binary poly(vinylidene fluoride)(PVDF)/MoS2 composites,the PVDF/MoS2-PPynws composites exhibited remarkably improved dielectric constant and breakdown strength,while the dielectric loss was still maintained at a low level.An optimal ternary composite with 1 wt%MoS2-PPynws showed a high dielectric constant(15@1kHz),suppressed dielectric loss(0.027@1kHz),and high breakdown strength(422.1 MV/m).PPynws inducing strong interfacial polarization and the highly insulated MoS2 nanosheets extending the breakdown path mainly contributed to the synchronously enhanced dielectric constant and breakdown strength.This intriguing synthesis method of PVDF/MoS2-PPynws nanocomposite will open up new opportunities for fabricating nanostructured polymer composites to produce high dielectric materials.
文献关键词:
作者姓名:
Hua-Bin Luo;Xiao-Ren Pan;Jing-Hui Yang;Xiao-Dong Qi;Yong Wang
作者机构:
School of Materials Science&Engineering,Key Laboratory of Advanced Technology of Materials(Ministry of Education),Southwest Jiaotong University,Chengdu 610031,China
引用格式:
[1]Hua-Bin Luo;Xiao-Ren Pan;Jing-Hui Yang;Xiao-Dong Qi;Yong Wang-.Simultaneously Improved Dielectric Constant and Breakdown Strength of PVDF-based Composites with Polypyrrole Nanowire Encapsuled Molybdenum Disulfide Nanosheets)[J].高分子科学(英文版),2022(05):515-525
A类:
Encapsuled,Disulfide,PPynws
B类:
Simultaneously,Improved,Dielectric,Constant,Breakdown,Strength,PVDF,Composites,Polypyrrole,Nanowire,Molybdenum,Nanosheets,High,performance,dielectric,polymer,composites,have,received,increasing,attention,due,their,important,applications,field,energy,storage,rational,structural,design,hybrid,fillers,can,lead,balance,between,constant,insulation,In,this,work,novel,were,fabricated,by,situ,synthesizing,one,dimensional,polypyrrole,nanowires,two,molybdenum,disulfide,MoS2,which,integrated,good,polarization,ability,adjustable,band,gap,Compared,binary,vinylidene,fluoride,exhibited,remarkably,improved,breakdown,strength,while,loss,was,still,maintained,low,level,An,optimal,ternary,wt,showed,1kHz,suppressed,MV,inducing,strong,interfacial,highly,insulated,nanosheets,extending,path,mainly,contributed,synchronously,enhanced,This,intriguing,synthesis,method,nanocomposite,will,open,new,opportunities,fabricating,nanostructured,produce,materials
AB值:
0.591427
相似文献
Biomass-Derived Carbon Heterostructures Enable Environmentally Adaptive Wideband Electromagnetic Wave Absorbers
Zhichao Lou;Qiuyi Wang;Ufuoma I.Kara;Rajdeep S.Mamtani;Xiaodi Zhou;Huiyang Bian;Zhihong Yang;Yanjun Li;Hualiang Lv;Solomon Adera;Xiaoguang Wang-Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources,Nanjing Forestry University,Nanjing 210037,People's Republic of China;Willian G.Lowrie Department of Chemical and Biomolecular Engineering,The Ohio State University,Columbus,OH 43210,USA;Institute of Materials Research and Engineering,Agency for Sciences,Technology and Research,Singapore,Singapore;Department of Mechanical Engineering,University of Michigan,Ann Arbor,MI 48109,USA;Sustainability Institute,The Ohio State University,Columbus,OH 43210,USA
Layered Foam/Film Polymer Nanocomposites with Highly Efficient EMI Shielding Properties and Ultralow Reflection
Li Ma;Mahdi Hamidinejad;Biao Zhao;Caiyun Liang;Chul B.Park-Department of Mechanical and Industrial Engineering,University of Toronto,5 King's College Road,Toronto,ON M5S 3G8,Canada;Institute for Manufacturing,Department of Engineering,University of Cambridge,Cambridge CB30FS,UK;Laboratory of Advanced Materials,Department of Materials Science,Collaborative Innovation Center of Chemistry for Energy Materials,Fudan University,Shanghai 200438,People's Republic of China;Henan Key Laboratory of Aeronautical Materials and Application Technology,School of Material Science and Engineering,Zhengzhou University of Aeronautics,Zhengzhou,Henan 450046,People's Republic of China;CAS Key Laboratory of High-Performance Synthetic Rubber and Its Composite Materials,Changchun Institute of Applied Chemistry,Chinese Academy of Sciences,Changchun 130022,People's Republic of China
Ultralight Magnetic and Dielectric Aerogels Achieved by Metal-Organic Framework Initiated Gelation of Graphene Oxide for Enhanced Microwave Absorption
Xiaogu Huang;Jiawen Wei;Yunke Zhang;BinBin Qian;Qi Jia;Jun Liu;Xiaojia Zhao;Gaofeng Shao-Institute of Advanced Materials and Flexible Electronics(IAMFE),School of Chemistry and Materials Science,Nanjing University of Information Science and Technology,Nanjing 210044,People's Republic of China;Department of Chemical and Biological Engineering,Monash University,Victoria 3800,Australia;School of Chemistry and Environmental Engineering,Yancheng Teachers University,Yancheng 224002,People's Republic of China;College of Field Engineering,Army Engineering University of PLA,Nanjing 210007,People's Republic of China;Hebei Key Laboratory of Inorganic Nano-Materials,College of Chemistry and Materials Science,Hebei Normal University,Shijiazhuang 050024,People's Republic of China
Vertically Aligned Silicon Carbide Nanowires/Boron Nitride Cellulose Aerogel Networks Enhanced Thermal Conductivity and Electromagnetic Absorbing of Epoxy Composites
Duo Pan;Gui Yang;Hala M.Abo-Dief;Jingwen Dong;Fengmei Su;Chuntai Liu;Yifan Li;Ben Bin Xu;Vignesh Murugadoss;Nithesh Naik;Salah M.El-Bahy;Zeinhom M.El-Bahy;Minan Huang;Zhanhu Guo-Key Laboratory of Materials Processing and Mold(Zhengzhou University),Ministry of Education;Mechanical and Construction Engineering,Faculty of Engineering and Environment,Northumbria University,Newcastle upon Tyne NE1 8ST,UK;National Engineering Research Center for Advanced Polymer Processing Technology,Zhengzhou University,Zhengzhou 450002,People's Republic of China;Department of Chemistry,College of Science,Taif University,P.O.Box 11099,Taif 21944,Saudi Arabia;Integrated Composites Laboratory(ICL),Department of Chemical and Biomolecular Engineering,University of Tennessee,Knoxville,TN 37996,USA;College of Materials Science and Engineering,Taiyuan University of Science and Technology,Taiyuan 030024,People's Republic of China;Department of Mechanical and Manufacturing Engineering,Manipal Institute of Technology,Manipal Academy of Higher Education,Manipal,Karnataka 576104,India;Department of Chemistry,Turabah University College,Taif University,P.O.Box 11099,Taif 21944,Saudi Arabia;Advanced Materials Division,Engineered Multifunctional Composites(EMC)Nanotech LLC,Knoxville,TN 37934,USA
Performance Evaluation of Calcium Alkali-treated Oil Palm/Pineapple Fibre/Bio-phenolic Composites
Sameer A.Awad;Hassan Fouad;Eman M.Khalaf;N.Saba;Hom N.Dhakal;M.Jawaid;Othman Y.Alothman-Department of Chemistry,School of Science and Technology,University of New England,Armidale,NSW 2351,Australia;Department of Chemistry,College of Education for Pure Science,University of Al-Anbar,Ramadi 31001,Iraq;Biomedical Engineering Department,Faculty of Engineering,Helwan University,Helwan 11792,Egypt;Pharmacy Department,Al-Maarif University College,Anbar 3001 Ramadi,Iraq;Laboratory of Biocomposite Technology,Institute of Tropical Forestry and Forest Products(INTROP),Universiti Putra Malaysia,43400 Serdang,Malaysia;Advanced Polymers and Composites(APC)Research Group,School of Mechanical and Design Engineering,University of Portsmouth,Portsmouth P 3DJ,UK;Department of Chemical Engineering,College of Engineering,King Saud University,Riyadh 11433,Saudi Arabia
Functional Hyperbranched Polythioamides Synthesized from Catalyst-free Multicomponent Polymerization of Elemental Sulfur
Shangrun Liu;Fengting Li;Wenxia Cao;Rongrong Hu;Ben Zhong Tang-State Key Laboratory of Luminescent Materials and Devices,Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates,South China University of Technology,Guangzhou,Guangdong 510640,China;Shenzhen Institute of Molecular Aggregate Science and Engineering,School of Science and Engineering,The Chinese University of Hong Kong,Shenzhen City,Guangdong 518172,China;AIE Institute,Guangzhou,Guangdong 510530,China;Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction,The Hong Kong University of Science&Technology,Clear Water Bay,Kowloon,Hong Kong,China
Polymer-/Ceramic-based Dielectric Composites for Energy Storage and Conversion
Honghui Wu;Fangping Zhuo;Huimin Qiao;Lalitha Kodumudi Venkataraman;Mupeng Zheng;Shuize Wang;He Huang;Bo Li;Xinping Mao;Qiaobao Zhang-Beijing Advanced Innovation Center for Materials Genome Engineering,Collaborative Innovation Center of Steel Technology,University of Science and Technology Beijing,Beijing 100083,China;Department of Materials and Earth Sciences,Technical University of Darmstadt,Darmstadt 64287,Germany;School of Advanced Materials and Engineering,Sungkyunkwan University(SKKU),Suwon 16419,Korea;Key Laboratory of Advanced Functional Materials,Ministry of Education,Faculty of Materials and Manufacturing,Beijing University of Technology,Beijing 100124,China;School of Materials Science and Engineering,University of Science and Technology Beijing,Beijing 100083,China;Department of Materials Science and Engineering,College of Materials,Xiamen University,Xiamen 361005,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。