首站-论文投稿智能助手
典型文献
Improvement in antibacterial ability and cell cytotoxicity of Ti-Cu alloy by anodic oxidation
文献摘要:
Ti-Cu alloy has potential to be used in plastic surgery and dental implants due to its strong antibacterial properties,high strength and good corrosion resistance.In this paper,Ti-5Cu was anodic-oxidized to enhance the surface compatibility.The influence of the oxidation on the corrosion resistance,antibacterial properties and biological properties was investigated.X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) results showed that a double-layer oxide coating with dense inner layer and porous outside layer was formed on Ti-Cu sample.The oxide coating consisted mainly of TiO2,CU2O and small amount of CuO,improved the corrosion resistance of Ti-Cu alloy by one order of magnitude due to the formation of the dense oxide inner layer,but high Cu ion release was detected.The plate count results showed that the antibac-terial activity of Ti-Cu sample was improved to ≥ 99%due to the comprehensive function of CuO and Cu2O in the coating and Cu2+ release.Cell test results showed that the coating exhibited good cell compatibility,the porous sur-face structure improved the adhesion of cells,and Cu ion release promoted the cell proliferation.
文献关键词:
作者姓名:
Shuang Cao;Zi-Ming Zhang;Jia-Qi Zhang;Ren-Xian Wang;Xiao-Yan Wang;Lei Yang;Da-Fu Chen;Gao-Wu Qin;Er-Lin Zhang
作者机构:
School of Materials Science and Engineering,Key Laboratory for Anisotropy and Texture of Materials,Education Ministry of China,Northeastern University,Shenyang 110819,China;Departments of Immunology,College of Basic Medicine,Jiamusi University,Jiamusi 154007,China;Laboratory of Bone Tissue Engineering,Beijing Laboratory of Biomedical Materials,Beijing Research Institute of Orthopaedics and Traumatology,Beijing Jishuitan Hospital,Beijing 100035,China;School of Metallurgy,Northeastern University,Shenyang 110819,China;Research Center for Metallic Wires,Northeastern University,Shenyang 110819,China
引用格式:
[1]Shuang Cao;Zi-Ming Zhang;Jia-Qi Zhang;Ren-Xian Wang;Xiao-Yan Wang;Lei Yang;Da-Fu Chen;Gao-Wu Qin;Er-Lin Zhang-.Improvement in antibacterial ability and cell cytotoxicity of Ti-Cu alloy by anodic oxidation)[J].稀有金属(英文版),2022(02):594-609
A类:
CU2O
B类:
Improvement,antibacterial,ability,cytotoxicity,alloy,by,anodic,oxidation,has,potential,be,used,plastic,surgery,dental,implants,due,its,strong,properties,high,strength,good,corrosion,resistance,In,this,paper,5Cu,was,oxidized,enhance,surface,compatibility,influence,biological,investigated,ray,diffraction,photoelectron,spectroscopy,XPS,results,showed,that,double,layer,oxide,coating,dense,inner,porous,outside,formed,sample,consisted,mainly,TiO2,small,amount,CuO,improved,one,order,magnitude,formation,but,release,detected,plate,count,activity,comprehensive,function,Cu2O,Cu2+,Cell,test,exhibited,structure,adhesion,cells,promoted,proliferation
AB值:
0.4851
相似文献
Mg-Fe LDH sealed PEO coating on magnesium for biodegradation control,antibacteria and osteogenesis
Dongdong Zhang;Jielong Zhou;Feng Peng;Ji Tan;Xianming Zhang;Shi Qian;Yuqin Qiao;Yu Zhang;Xuanyong Liu-State Key Laboratory of High Performance Ceramics and Superfine Microstructure,Shanghai Institute of Ceramics,Chinese Academy of Sciences,Shanghai 200050,China;Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,Beijing 100049,China;Department of Orthopedics.Guangdong Provincial People's Hospital,Guangdong Academy of Medical Sciences.Guangzhou,Guangdong 510080,China;Cixi Center of Biomaterials Surface Engineering.Shanghai Institute of Ceramics,Chinese Academy of Sciences,Ningbo 315300,China;School of Chemistry and Materials Science,Hangzhou Institute for Advanced Study,University of Chinese Academy of Sciences,1 Sub-lane Xiangshan,Hangzhou 310024,China
Medium-entropy(Me,Ti)0.1(Zr,Hf,Ce)0.9O2(Me=Y and Ta):Promising thermal barrier materials for high-temperature thermal radiation shielding and CMAS blocking
Shuaihang Qiu;Huimin Xiang;Fu-Zhi Dai;Hailong Wang;Muzhang Huang;Chunlei Wan;Qing Meng;Jiangtao Li;Xiaohui Wang;Yanchun Zhou-Science and Technology on Advanced Functional Composite Laboratory,Aerospace Research Institute of Materials and Processing Technology,Beijing 100076,China;State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China;School of Materials Science and Engineering,Zhengzhou University,Zhengzhou 450001,China;State Key Lab of New Ceramics and Fine Processing,School of Materials Science and Engineering,Tsinghua University,Beijing 100084,China;Technical Institute of Physics and Chemistry,Chinese Academy of Sciences,Beijing 100190,China;Institute of Metal Research,Chinese Academy of Sciences,Shenyang 110016,China
Osteogenic and antibacterial ability of micro-nano structures coated with ZnO on Ti-6Al-4V implant fabricated by two-step laser processing
Yi Wan;Zihe Zhao;Mingzhi Yu;Zhenbing Ji;Teng Wang;Yukui Cai;Chao Liu;Zhanqiang Liu-Key Laboratory of High Efficiency and Clean Manufacturing,School of Mechanical Engineering,Shandong University,Jinan 250061,China;Centre of Micro/Nano Manufacturing Technology(MNMT-Dublin),School of Mechanical and Materials Engineering,University College Dublin,Dublin D04 KW52,Ireland;School of Engineering Sciences in Chemistry,Biotechnology and Health,KTH Royal,Institute of Technology,Stockholm,Stockholm S-10044,Sweden;Department of Oral and Maxilofacial Surgery,Qilu Hospital of Shandong University,Jinan 250012,China;Department of Oral Surgery,Shanghai Ninth People's Hospital,Shanghai Jiao Tong University School of Medicine; College of Stomatology,Shanghai Jiao Tong University,National Center for Stomatology; National Clinical Research Center for Oral Diseases;Shanghai Key Laboratory of Stomatology, Shanghai 200011,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。