首站-论文投稿智能助手
典型文献
Chelation of lithium ion with crown ether for eliminating adverse effects caused by Li-TFSI/tBP doping system in Spiro-OMeTAD
文献摘要:
Lithium bis(trifluoromethanesulfonyl)imide(Li-TFSI)/4-tert-butylpyridine(tBP)is a classic doping sys-tem for the hole transport material Spiro-OMeTAD in typical n-i-p structure perovskite solar cells(PSCs),but this system will cause many problems such as high hygroscopicity,Li+migration,pinholes and so on,which hinder PSC from maintaining high efficiency and stability for long-term.In this work,an effective strategy is demonstrated to improve the performance and stability of PSC by replacing tBP with 12-crown-4.The chelation of 12-crown-4 with Li+not only improves the doping effect of Li-TFSI,but also perfectly solves the problems caused by the Li-TFSI/tBP system.The PSC based on this strategy achieved a champion power conversion efficiency(PCE)over 21%,which is significantly better than the pristine device(19.37%).More importantly,the without encapsulated device based on Li-TFSI/12-crown-4 still maintains 87%of the initial PCE even after 60 days exposure in air,while the pristine device only maintains 22%of the initial PCE under the same aging conditions.This strategy paves a novel way for con-structing efficient and stable PSCs.
文献关键词:
作者姓名:
Zhongquan Wan;Hui Lu;Jinyu Yang;Yunpeng Zhang;Fangyan Lin;Jianxing Xia;Xiaojun Yao;Junsheng Luo;Chunyang Jia
作者机构:
State Key Laboratory of Electronic Thin Films and Integrated Devices,School of Electronic Science and Engineering,University of Electronic Science and Technology of China,Chengdu 610054,Sichuan,China;Shenzhen Institute for Advanced Study,University of Electronic Science and Technology of China,Shenzhen 518110,Guangdong,China;State Key Laboratory of Applied Organic Chemistry,Lanzhou University,Lanzhou 730000,Gansu,China
文献出处:
引用格式:
[1]Zhongquan Wan;Hui Lu;Jinyu Yang;Yunpeng Zhang;Fangyan Lin;Jianxing Xia;Xiaojun Yao;Junsheng Luo;Chunyang Jia-.Chelation of lithium ion with crown ether for eliminating adverse effects caused by Li-TFSI/tBP doping system in Spiro-OMeTAD)[J].能源化学,2022(11):489-496
A类:
tBP,butylpyridine,Li+migration,Li+not
B类:
Chelation,lithium,crown,ether,eliminating,adverse,effects,caused,by,TFSI,doping,system,Spiro,OMeTAD,Lithium,bis,trifluoromethanesulfonyl,imide,tert,classic,transport,material,typical,structure,perovskite,solar,cells,PSCs,this,will,many,problems,such,high,hygroscopicity,pinholes,which,hinder,from,maintaining,efficiency,stability,long,term,In,work,effective,strategy,demonstrated,performance,replacing,chelation,only,improves,also,perfectly,solves,achieved,champion,power,conversion,PCE,over,significantly,better,pristine,device,More,importantly,without,encapsulated,still,maintains,initial,even,after,days,exposure,air,while,under,same,aging,conditions,This,paves,novel,way,structing,efficient,stable
AB值:
0.511852
相似文献
Carbonized waste milk powders as cathodes for stable lithium-sulfur batteries with ultra-large capacity and high initial coulombic efficiency
Rabia Khatoon;Sanam Attique;Rumin Liu;Sajid Rauf;Nasir Ali;Luhong Zhang;Yu-Jia Zeng;Yichuan Guo;Yusuf Valentino Kaneti;Jongbeom Na;Haichao Tang;Hongwen Chen;Yang Tian;Jianguo Lu-State Key Laboratory of Silicon Materials,Key Laboratory for Biomedical Engineering of Ministry of Education,School of Materials Science and Engineering,Zhejiang University,Hangzhou,310027,China;Institute for Composites Science Innovation,School of Materials Science and Engineering,Zhejiang University,Hangzhou,310027,China;Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials,Faculty of Physics and Electronic Science,Hubei University,Wuhan,Hubei,430062,China;State Key Laboratory for Silicon Materials,Key Laboratory of Quantum Technology and Devices,Department of Physics,Zhejiang University,Hangzhou,310027,China;College of Physics and Optoelectronic Engineering,Shenzhen University,Shenzhen,518060,China;International Center for Materials Nanoarchitectonics(WPI-MANA),National Institute for Materials Science(NIMS),1-1 Namiki,Ibaraki,305-0044,Japan;School of Chemical Engineering&Australian Institute for Bioengineering and Nanotechnology(AIBN),The University of Queensland,Brisbane,QLD,4072,Australia
Heteroheptacene-based acceptors with thieno[3,2-b]pyrrrole yield high-performance polymer solar cells
Zhenghui Luo;Ruijie Mao;Jianwei Yu;Heng Liu;Tao Liu;Fan Ni;Jiahao Hu;Yang Zou;Anping Zeng;Chun-Jen Su;U-Ser Jeng;Xinhui Lu;Feng Gao;Chuluo Yang;He Yan-Shenzhen Key Laboratory of Polymer Science and Technology,College of Materials Science and Engineering,Shenzhen University,Shenzhen 518060,China;Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration&Reconstruction,Hong Kong University of Science and Technology(HKUST),Hong Kong,China;Hong Kong University of Science and Technology-Shenzhen Research Institute,Shenzhen 518057,China;Department of Physics,Chemistry and Biology(IFM),Link?ping University,Link?ping SE-58183,Sweden;Department of Physics,Chinese University of Hong Kong,Hong Kong,China;Synchrotron Radiation Research Center,Hsinchu Science Park,Hsinchu 30076,China;Department of Chemical Engineering,Tsing Hua University,Hsinchu 30013,China;Hong Kong University of Science and Technology(HKUST)Light-Emitting Diode and Flat Panel Display Technology Research&Development Center,Foshan 526040,China;Hong Kong University of Science and Technology(HKUST)Foshan Research Institute for Smart Manufacturing,Hong Kong,China
16.3%Efficiency binary all-polymer solar cells enabled by a novel polymer acceptor with an asymmetrical selenophene-fused backbone
Huiting Fu;Qunping Fan;Wei Gao;Jiyeon Oh;Yuxiang Li;Francis Lin;Feng Qi;Changduk Yang;Tobin J.Marks;Alex K.-Y.Jen-Department of Materials Science and Engineering,City University of Hong Kong,Kowloon 999077,Hong Kong,China;Department of Chemistry,City University of Hong Kong,Kowloon 999077,Hong Kong,China;Institute for Advanced Studies,City University of Hong Kong,Kowloon 999077,Hong Kong,China;Department of Energy Engineering,School of Energy and Chemical Engineering,Perovtronics Research Center Low Dimensional Carbon Materials Center Ulsan National Institute of Science and Technology(UNIST),50 UNIST-gil,Ulju-gun,Ulsan 44919,Republic of Korea;Department of Chemistry and the Materials Research Center Northwestern University,Evanston,IL,60208,USA;Department of Materials Science and Engineering,University of Washington,Seattle,Washington 98195-2120,USA
Chlorinated polymerized small molecule acceptor enabling ternary all-polymer solar cells with over 16.6%efficiency
Ke Hu;Jiaqi Du;Can Zhu;Wenbin Lai;Jing Li;Jingming Xin;Wei Ma;Zhanjun Zhang;Jinyuan Zhang;Lei Meng;Yongfang Li-School of Chemical Science,University of Chinese Academy of Sciences,Beijing 100049,China;Beijing National Laboratory for Molecular Sciences,CAS Key Laboratory of Organic Solids,Institute of Chemistry,Chinese Academy of Sciences,Beijing 100190,China;Key Laboratory of Photochemical Conversion and Optoelectronic Materials,Technical Institute of Physics and Chemistry,Chinese Academy of Sciences,Beijing 100190,China;State Key Laboratory for Mechanical Behavior of Materials,Xi'an Jiaotong University,Xi'an 710049,China;Laboratory of Advanced Optoelectronic Materials,Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices,College of Chemistry,Chemical Engineering and Materials Science,Soochow University,Suzhou 215123,China
Lowing the energy loss of organic solar cells by molecular packing engineering via multiple molecular conjugation extension
Hongbin Chen;Yalu Zou;Huazhe Liang;Tengfei He;Xiaoyun Xu;Yunxin Zhang;Zaifei Ma;Jing Wang;Mingtao Zhang;Quanwen Li;Chenxi Li;Guankui Long;Xiangjian Wan;Zhaoyang Yao;Yongsheng Chen-State Key Laboratory and Institute of Elemento-Organic Chemistry,Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials,Renewable Energy Conversion and Storage Center(RECAST),College of Chemistry,Nankai University,Tianjin 300071,China;School of Materials Science and Engineering,National Institute for Advanced Materials,Renewable Energy Conversion and Storage Center(RECAST),Nankai University,Tianjin 300350,China;State Key Laboratory for Modification of Chemical Fibers and Polymer Materials,Center for Advanced Low-dimension Materials,College of Materials Science and Engineering,Donghua University,Shanghai 201620,China;School of Materials Science&Engineering,Tianjin University of Technology,Tianjin 300384,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。