FAILED
首站-论文投稿智能助手
典型文献
基于机器学习的排涝闸站雨后水位预测
文献摘要:
[目的]精准预测排涝闸站雨后水位.[方法]在分析为期1 a的田间实测水位数据的基础上,收集了四湖流域2个典型闸站(习家口站、田关站)为期10 a(2010—2020年)的历史水情资料,利用2种机器学习算法(支持向量机回归算法、回归树算法)对排涝闸站的雨后水位进行预测分析.[结果]支持向量机回归算法和回归树算法均较好地预测了习家口站和田关站的雨后最高闸上水位,R2基本大于0.80;2种机器学习算法在习家口站的表现均优于田关站,核函数的选取对支持向量机回归算法的预测结果有一定影响,线性核函数表现较为稳定.回归树算法的效果略优于支持向量机回归算法.[结论]基于闸上水位、降水量、降水时间、泵站排水流量预测雨后最高闸上水位是可行的.不同闸站应分开进行训练,并寻找最优的机器学习算法,未来有必要结合降水预报数据实现农田涝灾情况的实时预报.
文献关键词:
农田;机器学习;闸上水位;涝灾;预测
作者姓名:
江赜伟;杨士红;柳真杨;徐俊增;庞晴晴
作者机构:
河海大学 农业科学与工程学院,南京 210098;河海大学 水文水资源与水利工程科学国家重点试验室,南京 210098;河海大学 水安全与水利科学合作创新中心,南京 210098;生态环境部 南京环境科学研究所,南京 210042
文献出处:
引用格式:
[1]江赜伟;杨士红;柳真杨;徐俊增;庞晴晴-.基于机器学习的排涝闸站雨后水位预测)[J].灌溉排水学报,2022(04):135-140
A类:
闸上水位
B类:
基于机器学习,排涝,闸站,雨后,水位预测,精准预测,田间,四湖流域,家口,水情,机器学习算法,支持向量机回归算法,回归树,预测分析,和田,于田,有一定影响,线性核函数,降水量,降水时间,泵站,排水流量,流量预测,开进,降水预报,报数,涝灾,灾情,实时预报
AB值:
0.27363
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。