典型文献
基于极限学习机的底层特征全参考彩色图像质量评价方法
文献摘要:
作为图像质量的监测和评价工具,图像质量评价(image quality assessment,IQA)在各种图像处理系统中发挥着重要的作用,理想的IQA方法应该与人类视觉系统(human visual system,HVS)相一致.目前HVS对图像的理解主要是依据图像的底层特征,本文提出了一种新的全参考(full reference,FR)彩色图像IQA方法.首先,提取了结构对比度指标(structural contrast index,SCI)、梯度、局部二值模式(local binary pattern,LBP)和色度四类底层特征图,用于刻画图像的不同特征属性;其次,利用不同的特征池化策略对每类特征分别处理,将其组成一组相似特征向量作为图像质量的检测器并采用极限学习机(extreme learning machine,ELM)建立回归模型,得到客观的质量分数;最后,与目前流行的8种FR IQA方法在5个标准IQA数据库上进行数值实验.结果表明,该方法整体性能优于其他方法,能够有效地提高大多数失真类型的预测精度.
文献关键词:
彩色图像质量评价;底层特征;局部二值模式;梯度;结构对比度指标;极限学习机
中图分类号:
作者姓名:
马月梅;付浩;刘国军;杨玲;魏立力
作者机构:
宁夏大学数学统计学院,宁夏 银川750021
文献出处:
引用格式:
[1]马月梅;付浩;刘国军;杨玲;魏立力-.基于极限学习机的底层特征全参考彩色图像质量评价方法)[J].南京师大学报(自然科学版),2022(04):91-101
A类:
结构对比度指标
B类:
极限学习机,底层特征,全参考,彩色图像质量评价,质量评价方法,评价工具,image,quality,assessment,IQA,图像处理系统,人类视觉系统,human,visual,system,HVS,相一致,full,reference,FR,structural,contrast,SCI,局部二值模式,local,binary,pattern,LBP,色度,四类,特征图,画图,特征属性,池化策略,每类,别处,特征向量,检测器,extreme,learning,machine,ELM,数值实验,整体性能,其他方法,失真
AB值:
0.374702
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。