首站-论文投稿智能助手
典型文献
电力无线专网宏微协同组网中小区协作式故障检测
文献摘要:
为了应对电力系统的数据流量增长、提升电力用户体验,电力无线专网系统将由密集部署的宏微小区组成,而网络中的故障小区会带来覆盖盲点从而影响网络服务质量.为了解决电力无线专网宏微协同组网中基于人工的故障检测方式效率低且成本高的问题,提出了一种基于迁移隐马尔可夫模型(transfer learning based hidden Markov model,TL-HMM)的小区间协作式故障检测算法,以助力实现小区的自主监督,减小人力成本和开销.将小区的工作状态根据异常程度划分为4类;采用隐马尔可夫模型(HMM)根据电力用户测量报告推断小区的工作状态;引入提出的算法,加快算法收敛性,降低所需训练样本数和学习时间.仿真结果表明,提出的算法不仅学习速度快,且对小区故障的平均检测精度可达到90%以上.
文献关键词:
电力无线专网;宏微协同组网;协作式故障检测;迁移学习;隐马尔可夫模型
作者姓名:
唐元春
作者机构:
国网福建省电力有限公司 经济技术研究院,福州350012
引用格式:
[1]唐元春-.电力无线专网宏微协同组网中小区协作式故障检测)[J].重庆邮电大学学报(自然科学版),2022(01):78-84
A类:
宏微协同组网,协作式故障检测
B类:
电力无线专网,电力系统,数据流量,流量增长,电力用户,用户体验,密集部署,盲点,网络服务质量,检测方式,隐马尔可夫模型,transfer,learning,hidden,Markov,model,TL,HMM,检测算法,主监,小人,人力成本,开销,工作状态,测量报告,收敛性,训练样本,学习时间,学习速度,检测精度,迁移学习
AB值:
0.24626
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。