首站-论文投稿智能助手
典型文献
考虑换道意图的LSTM-AdaBoost车辆轨迹预测模型
文献摘要:
不合理的车辆的换道行为是导致交通事故发生的主要原因之一,提前预知换道车辆的轨迹并及时做出相应调整有助于减少事故的发生.针对换道车辆轨迹预测问题,采用将深度学习和集成学习相结合的轨迹预测方法,并考虑了换道意图的影响.建立连续隐马尔可夫模型对车辆进行换道意图检测,提前判别车辆的换道状态,并输入至相应的轨迹预测模型中;将LSTM(long short term memory)作为AdaBoost算法(adaptive boosting)的基预测器,建立LSTM-AdaBoost模型,在多个基预测器同时进行轨迹预测的基础上,通过训练调整各个基预测器的权重并将结果加权集成,提升预测模型的精度和稳定性;通过NSGIM(next generation simulation)数据集对模型进行训练和测试,结果显示意图预测模型在变道前一秒的准确率在90%以上,LSTM-AdaBoost集成轨迹预测模型与单一的LSTM模型相比精度和稳定性显著提升,且预测结果中异常数据更少,具有较好的稳定性;同时预测对比结果也表明增加意图预测模块有助于提升换道轨迹预测的精度.
文献关键词:
车辆换道轨迹预测;换道意图识别;隐马尔可夫模型;长短期记忆网络;AdaBoost集成算法
作者姓名:
孟宪伟;唐进君;王喆
作者机构:
中南大学 交通运输工程学院,长沙 410075
引用格式:
[1]孟宪伟;唐进君;王喆-.考虑换道意图的LSTM-AdaBoost车辆轨迹预测模型)[J].计算机工程与应用,2022(13):280-287
A类:
NSGIM,车辆换道轨迹预测
B类:
AdaBoost,车辆轨迹预测,换道行为,交通事故,预知,对换,集成学习,隐马尔可夫模型,long,short,term,memory,adaptive,boosting,预测器,加权集成,next,generation,simulation,示意图,意图预测,变道,一秒,异常数据,加意,换道意图识别,长短期记忆网络,集成算法
AB值:
0.236117
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。