首站-论文投稿智能助手
典型文献
M1-type microglia can induce astrocytes to deposit chondroitin sulfate proteoglycan after spinal cord injury
文献摘要:
After spinal cord injury (SCI), astrocytes gradually migrate to and surround the lesion, depositing chondroitin sulfate proteoglycan-rich extracellular matrix and forming astrocytic scar, which limits the spread of inflammation but hinders axon regeneration. Meanwhile, microglia gradually accumulate at the lesion border to form microglial scar and can polarize to generate a pro-inflammatory M1 phenotype or an anti-inflammatory M2 phenotype. However, the effect of microglia polarization on astrocytes is unclear. Here, we found that both microglia (CX3CR1+) and astrocytes (GFAP+) gathered at the lesion border at 14 days post-injury (dpi). The microglia accumulated along the inner border of and in direct contact with the astrocytes. M1-type microglia (iNOS+CX3CR1+) were primarily observed at 3 and 7 dpi, while M2- type microglia (Arg1+CX3CR1+) were present at larger numbers at 7 and 14 dpi. Transforming growth factor-β1 (TGFβ1) was highly expressed in M1 microglia in vitro, consistent with strong expression of TGFβ1 by microglia in vivo at 3 and 7 dpi, when they primarily exhibited an M1 phenotype. Furthermore, conditioned media from M1-type microglia induced astrocytes to secrete chondroitin sulfate proteoglycan in vitro. This effect was eliminated by knocking down sex-determining region Y-box 9 (SOX9) in astrocytes and could not be reversed by treatment with TGFβ1. Taken together, our results suggest that microglia undergo M1 polarization and express high levels of TGFβ1 at 3 and 7 dpi, and that M1-type microglia induce astrocytes to deposit chondroitin sulfate proteoglycan via the TGFβ1/SOX9 pathway. The study was approved by the Institutional Animal Care and Use Committee of Anhui Medical University, China (approval No. LLSC20160052) on March 1, 2016.
文献关键词:
作者姓名:
Shui-Sheng Yu
作者机构:
Department of Orthopedics,The Second Hospital of Anhui Medical University,Hefei,Anhui Province,China
引用格式:
[1]Shui-Sheng Yu-.M1-type microglia can induce astrocytes to deposit chondroitin sulfate proteoglycan after spinal cord injury)[J].中国神经再生研究(英文版),2022(05):1072-1079
A类:
CX3CR1+,iNOS+CX3CR1+,Arg1+CX3CR1+,LLSC20160052
B类:
M1,astrocytes,chondroitin,sulfate,proteoglycan,after,spinal,cord,injury,After,SCI,gradually,migrate,surround,lesion,depositing,rich,extracellular,matrix,astrocytic,scar,which,limits,spread,inflammation,but,hinders,axon,regeneration,Meanwhile,border,microglial,polarize,generate,inflammatory,phenotype,anti,M2,However,effect,polarization,unclear,Here,found,that,both,GFAP+,gathered,days,post,dpi,accumulated,along,inner,direct,contact,were,primarily,observed,present,larger,numbers,Transforming,growth,TGF,was,highly,expressed,vitro,consistent,strong,expression,by,vivo,when,they,exhibited,Furthermore,conditioned,media,from,induced,secrete,This,eliminated,knocking,down,sex,determining,region,box,SOX9,could,reversed,treatment,Taken,together,our,results,suggest,undergo,levels,via,pathway,study,approved,Institutional,Animal,Care,Use,Committee,Anhui,Medical,University,China,approval,No,March
AB值:
0.4713
相似文献
CX3C-chemokine receptor 1 modulates cognitive dysfunction induced by sleep deprivation
Xin Jiawei;Wang Chao;Cheng Xiaojuan;Xie Changfu;Zhang Qiuyang;Ke Yilang;Huang Xuanyu;Chen Xiaochun;Pan Xiaodong-Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China;Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350001, China;Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Medical University, Fuzhou, Fujian 350001, China;School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian 350001, China;Department of Geriatrics, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China;Fujian Key Laboratory of Vascular Aging, Fujian Medical University, Fuzhou, Fujian 350001, China
EGFR signaling promotes nuclear translocation of plasma membrane protein TSPAN8 to enhance tumor progression via STAT3-mediated transcription
Xiaoqing Lu;Liwei An;Guangjian FanTi;Lijuan Zang;Weiyi Huang;Junjian Li;Jun Liu;Weiyu Ge;Yuwei Huang;Jingxuan Xu;Shaoqian Du;Yuan Cao;Tianhao Zhou;Huijing Yin;Li Yu;Shi Jiao;Hongxia Wang-State Key Laboratory of Oncogenes and Related Genes,Department of Oncology,Shanghai General Hospital,Shanghai Jiao Tong University School of Medicine,Shanghai,China;Department of Breast Surgery,Shanxi Cancer Hospital,Chinese Academy of Medical Sciences,Taiyuan,Shanxi,China;Department of Medical Ultrasound,Shanghai Tenth People's Hospital,Tongji University Cancer Center,School of Medicine,Tongji University,Shanghai,China;Precision Research Center for Refractory Diseases,Institute for Clinical Research,Shanghai General Hospital,Shanghai Jiao Tong University School of Medicine,Shanghai,China;Department of Pathology,Shanghai General Hospital,Shanghai Jiao Tong University School of Medicine,Shanghai,China;State Key Laboratory of Membrane Biology,Tsinghua-Peking University Joint Center for Life Sciences,School of Life Science,Tsinghua University,Beijing,China;State Key Laboratory of Genetic Engineering,School of Life Sciences,Fudan University,Shanghai,China
Inhibiting Hv1 channel in peripheral sensory neurons attenuates chronic inflammatory pain and opioid side effects
Qiansen Zhang;Yimin Ren;Yiqing Mo;Peipei Guo;Ping Liao;Yuncheng Luo;Jie Mu;Zhuo Chen;Yang Zhang;Ya Li;Linghui Yang;Daqing Liao;Jie Fu;Juwen Shen;Wei Huang;Xuewen Xu;Yanyan Guo;Lianghe Mei;Yunxia Zuo;Jin Liu;Huaiyu Yang;Ruotian Jiang-Shanghai Key Laboratory of Regulatory Biology,Institute of Biomedical Sciences,School of Life Sciences,East China Normal University,Shanghai,China;Laboratory of Anesthesia and Critical Care Medicine,National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology,West China Hospital,Sichuan University,Chengdu,Sichuan,China;Department of Anesthesiology,the Affiliated Hospital of Guizhou Medical University,Guiyang,Guizhou,China;Department of Integrated Traditional Chinese and Western Medicine,Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre,West China Hospital,Sichuan University,Chengdu,Sichuan,China;Department of Burn and Plastic Surgery,West China Hospital of Sichuan University,Chengdu,Sichuan,China;Suzhou Institute of Drug Innovation,Shanghai Institute of Materia Medica,Chinese Academy of Sciences,Suzhou,Jiangsu,China
Transcriptome dynamics of hippocampal neurogenesis in macaques across the lifespan and aged humans
Wei Wang;Mengdi Wang;Meng Yang;Bo Zeng;Wenying Qiu;Qiang Ma;Xiaoxi Jing;Qianqian Zhang;Bosong Wang;Chonghai Yin;Jiyao Zhang;Yuxin Ge;Yufeng Lu;Weizhi Ji;Qian Wu;Chao Ma;Xiaoqun Wang-State Key Laboratory of Cognitive Neuroscience and Learning,IDG/McGovern Institute for Brain Research,Beijing Normal University,Beijing,China;State Key Laboratory of Brain and Cognitive Science,CAS Center for Excellence in Brain Science and Intelligence Technology(Shanghai),Institute of Biophysics,Chinese Academy of Sciences,Beijing,China;Changping Laboratory,Beijing,China;University of Chinese Academy of Sciences,Beijing,China;Institute of Basic Medical Sciences,Neuroscience Center,National Human Brain Bank for Development and Function,Chinese Academy of Medical Sciences;Department of Human Anatomy,Histology and Embryology,School of Basic Medicine,Peking Union Medical College,Beijing,China;Yunnan Key Laboratory of Primate Biomedical Research,Institute of Primate Translational Medicine,Kunming University of Science and Technology,Kunming,Yunan,China;Advanced Innovation Center for Human Brain Protection,Beijing Institute for Brain Disorders,Capital Medical University,Beijing,China
Sulforaphane activates anti-inflammatory microglia,modulating stress resilience associated with BDNF transcription
Rui Tang;Qian-qian Cao;Sheng-wei Hu;Lu-juan He;Peng-fei Du;Gang Chen;Rao Fu;Fei Xiao;Yi-rong Sun;Ji-chun Zhang;Qi Qi-Department of Physiology,School of Medicine,Jinan University,Guangzhou 510632,China;School of Medicine,Xi-an Medicine College,Xi-an 710000,China;MOE Key Laboratory of Tumor Molecular Biology,Clinical Translational Center for Targeted Drug,Department of Pharmacology,School of Medicine,Jinan University,Guangzhou 510632,China;Second Affiliated Hospital of Jiaxing,Jiaxing 4564496,China;School of traditional Chinese Medicine,Jinan University,Guangzhou 510632,China;Department of Anatomy,School of Medicine(Shenzhen),Sun Yat-sen University,Guangzhou 510080,China;Department of Pharmacology,School of Pharmacy,Jinan University,Guangzhou 510632,China;Guangzhou Institutes of Biomedicine and Health,Chinese Academy of Sciences,Guangzhou 510530,China
Neuronal chemokine-like-factor 1(CKLF1)up-regulation promotes M1 polarization of microglia in rat brain after stroke
Xin Zhou;Ya-ni Zhang;Fang-fang Li;Zhao Zhang;Li-yuan Cui;Hong-yuan He;Xu Yan;Wen-bin He;Hong-shuo Sun;Zhong-ping Feng;Shi-feng Chu;Nai-hong Chen-State Key Laboratory of Bioactive Substances and Functions of Natural Medicines,Institute of Materia Medica and Neuroscience Center,Chinese Academy of Medical Sciences and Peking Union Medical College,Beijing 100050,China;Institute of Clinical Pharmacology&Science and Technology Innovation Center,Guangzhou University of Chinese Medicine,Guangzhou 510405,China;Tianjin University of Tradition Chinese Medicine,Tianjin 301617,China;Shanxi Key Laboratory of Chinese Medicine Encephalopathy,Shanxi University of Chinese Medicine,Jinzhong 030619,China;Department of Physiology,Faculty of Medicine,University of Toronto,Toronto,ON,Canada
GPR84 signaling promotes intestinal mucosal inflammation via enhancing NLRP3 inflammasome activation in macrophages
Qing Zhang;Lin-hai Chen;Hui Yang;You-chen Fang;Si-wei Wang;Min Wang;Qian-ting Yuan;Wei Wu;Yang-ming Zhang;Zhan-ju Liu;Fa-jun Nan;Xin Xie-State Key Laboratory of Drug Research,The National Center for Drug Screening,Shanghai Institute of Materia Medica,Chinese Academy of Sciences,Shanghai 201203,China;School of Pharmaceutical Science and Technology,Hangzhou Institute for Advanced Study,University of Chinese Academy of Sciences,Hangzhou 310024,China;University of Chinese Academy of Sciences,Beijing 100049,China;Department of Gastroenterology,The Shanghai Tenth People's Hospital,Tongji University,Shanghai 200072,China;Burgeon Therapeutics Co.,Ltd,Shanghai 201203,China;Yantai Key Laboratory of Nanomedicine and Advanced Preparations,Yantai Institute of Materia Medica,Yantai 264000,China
Novel Caspase-1 inhibitor CZL80 improves neurological function in mice after progressive ischemic stroke within a long therapeutic time-window
Ling Pan;Wei-dong Tang;Ke Wang;Qi-feng Fang;Meng-ru Liu;Zhan-xun Wu;Yi Wang;Sun-liang Cui;Gang Hu;Ting-jun Hou;Wei-wei Hu;Zhong Chen;Xiang-nan Zhang-Institute of Pharmacology and Toxicology,College of Pharmaceutical Sciences,Zhejiang University,Hangzhou 310058,China;Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province,School of Pharmaceutical Sciences,Zhejiang Chinese Medical University,Hangzhou 310053,China;Department of Pharmachemistry,College of Pharmaceutical Sciences,Zhejiang University,Hangzhou 310058,China;Department of Pharmacology,School of Medicine and Life Sciences,Nanjing University of Chinese Medicine,Nanjing 210029,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。