FAILED
首站-论文投稿智能助手
典型文献
Assimilation of All-Sky Radiance from the FY-3 MWHS-2 with the Yinhe 4D-Var System
文献摘要:
Compared with traditional microwave humidity sounding capabilities at 183 GHz, new channels at 118 GHz have been mounted on the second generation of the Microwave Humidity Sounder (MWHS-2) onboard the Chinese FY-3C and FY-3D polar orbit meteorological satellites, which helps to perform moisture sounding. In this study, as the all- sky approach can manage non-linear and non-Gaussian behavior in cloud- and precipitation-affected satellite radi- ances, the MWHS-2 radiances in all-sky conditions were first assimilated in the Yinhe four-dimensional variational data assimilation (YH4DVAR) system. The data quality from MWHS-2 was evaluated based on observation minus background statistics. It is found that the MWHS-2 data of both FY-3C and FY-3D are of good quality in general. Six months of MWHS-2 radiances in all-sky conditions were then assimilated in the YH4DVAR system. Based on the forecast scores and observation fits, we conclude that the all-sky assimilation of the MWHS-2 at 118- and 183-GHz channels on FY-3C/D is beneficial to the analysis and forecast fields of the temperature and humidity, and the impact on the forecast skill scores is neutral to positive. Additionally, we compared the impacts of assimilating the 118-GHz channels and the equivalent Advanced Microwave Sounding Unit-A (AMSUA) channels on global forecast accuracy in the absence of other satellite observations. Overall, the impact of the 118-GHz channels on the forecast accuracy is not as large as that for the equivalent AMSUA channels. Nevertheless, all-sky radiance assimilation of MWHS-2 in the YH4DVAR system has indeed benefited from the 118-GHz channels.
文献关键词:
作者姓名:
Shuo MA;Weimin ZHANG;Xiaoqun CAO;Yanlai ZHAO;Bainian LIU
作者机构:
College of Meteorology and Oceanography,National University of Defense Technology,Changsha 410073
引用格式:
[1]Shuo MA;Weimin ZHANG;Xiaoqun CAO;Yanlai ZHAO;Bainian LIU-.Assimilation of All-Sky Radiance from the FY-3 MWHS-2 with the Yinhe 4D-Var System)[J].气象学报(英文版),2022(05):750-766
A类:
Yinhe,radiances,YH4DVAR,AMSUA
B类:
Assimilation,All,Sky,Radiance,from,FY,MWHS,Var,System,Compared,traditional,microwave,humidity,sounding,capabilities,GHz,new,channels,have,been,mounted,second,generation,Microwave,Humidity,Sounder,onboard,Chinese,3C,polar,orbit,meteorological,satellites,which,helps,perform,moisture,In,this,study,sky,approach,can,manage,linear,Gaussian,behavior,cloud,precipitation,affected,conditions,were,first,assimilated,four,dimensional,variational,data,assimilation,system,quality,was,evaluated,minus,background,statistics,It,found,that,both,good,general,Six,months,then,Based,forecast,scores,fits,conclude,beneficial,analysis,fields,temperature,skill,neutral,positive,Additionally,compared,impacts,assimilating,equivalent,Advanced,Sounding,Unit,global,accuracy,absence,other,observations,Overall,not,large,Nevertheless,has,indeed,benefited
AB值:
0.445365
相似文献
A New Post-hoc Flat Field Measurement Method for the Solar X-Ray and Extreme Ultraviolet Imager Onboard the FengYun-3E Satellite
Qiao Song;Xianyong Bai;Bo Chen;Xiuqing Hu;Yajie Chen;Zhenyong Hou;Xiaofan Zhang;Lingping He;Kefei Song;Peng Zhang;Jing-Song Wang;Xiaoxin Zhang;Weiguo Zong;Jinping Dun;Hui Tian;Yuanyong Deng-Key Laboratory of Space Weather,National Satellite Meteorological Center(National Center for Space Weather),China Meteorological Administration,Beijing 100081,China;State Key Laboratory of Space Weather,Chinese Academy of Sciences,Beijing 100190,China;Innovation Center for Fengyun Meteorological Satellite,China Meteorological Administration,Beijing 100081,China;National Astronomical Observatories,Chinese Academy of Sciences,Beijing 100101,China;Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences,Changchun 130033,China;Key Laboratory of Radiometric Calibration and Validation for Environmental Satellites,National Satellite Meteorological Center(National Center for Space Weather),China Meteorological Administration,Beijing 100081,China;School of Earth and Space Sciences,Peking University,Beijing 100871,China
Detection of oil spill based on CBF-CNN using HY-1C CZI multispectral images
Kai Du;Yi Ma;Zongchen Jiang;Xiaoqing Lu;Junfang Yang-College of Geodesy and Geomatics,Shandong University of Science and Technology,Qingdao 266590,China;First Institute of Oceanology,Ministry of Natural Resources,Qingdao 266061,China;Technology Innovation Center for Ocean Telemetry,Ministry of Natural Resources,Qingdao 266061,China;National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology,Xi'an 710072,China;School of Electronics and Information Engineering,Harbin Institute of Technology,Harbin 150001,China;National Satellite Ocean Application Service,Beijing 100081,China;College of Oceanography and Space Informatics,China University of Petroleum(East China),Qingdao 266580, China
Fengyun-4 Geostationary Satellite-Based Solar Energy Nowcasting System and Its Application in North China
Chunlin HUANG;Hongrong SHI;Ling GAO;Mengqi LIU;Qixiang CHEN;Disong FU;Shu WANG;Yuan YUAN;Xiang'ao XIA-Key Laboratory of Aerospace Thermophysics,Ministry of Industry and Information Technology,Harbin Institute of Technology,Harbin 150001,China;Key Laboratory of Middle Atmosphere and Global Environment Observation,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China;Key Laboratory of Cloud-Precipitation Physics and Severe Storms,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China;National Satellite Meteorological Center,China Meteorological Administration,Beijing 100192,China;Key Laboratory of Atmospheric Sounding,Chengdu University of Information Technology,Chengdu 610225,China;State Key Laboratory of Operation and Control of Rene wable Energy&Storage Systems,China Electric Po wer Research Institute(CEPRI),Beijing 100192,China;Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters,Nanjing University ofInformation Science&Technology,Nanjing 210044,China
Spatiotemporal Variations of Microwave Land Surface Emissivity (MLSE) over China Derived from Four-Year Recalibrated Fengyun 3B MWRI Data
Rui LI;Jiheng HU;Shengli WU;Peng ZHANG;Husi LETU;Yu WANG;Xuewen WANG;Yuyun FU;Renjun ZHOU;Ling SUN-School of Earth and Space Sciences,Comparative Planetary Excellence Innovation Center,Chinese Academy of Sciences, University of Science and Technology of China,Hefei 230026,China;State Key Laboratory of Fire Science,University of Science and Technology of China,Hefei 230026,China;National Satellite Meteorological Center of China Meteorological Administration,Beijing 100044,China;State Key Laboratory of Remote Sensing Science,The Aerospace Information Research Institute, Chinese Academy of Sciences(CAS),Beijing 100101,China;Green Earth Research Inc.,Slingerlands,New York 12259,USA
Assimilation of All-sky Geostationary Satellite Infrared Radiances for Convection-Permitting Initialization and Prediction of Hurricane Joaquin (2015)
Lei ZHU;Zhiyong MENG;Yonghui WENG;and Fuqing ZHANG-Key Laboratory of Meteorological Disaster,Ministry of Education(KLME)/Joint International Research Laboratory of Climate and Environmental Change(ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters(CIC-FEMD),Nanjing University of Information Science and Technology,Nanjing 210044,China;Laboratory for Climate and Ocean–Atmosphere Studies,Department of Atmospheric and Oceanic Sciences,School of Physics,Peking University,Beijing 100871,China;I.M.System Group(IMSG),at Environmental Modeling Center(EMC),NCEP,NWS,NOAA,College Park,MD 20740,USA;Department of Meteorology and Atmospheric Science,and Center for Advanced Data Assimilation and Predictability Techniques,The Pennsylvania State University,University Park,Pennsylvania 16802,USA
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。