首站-论文投稿智能助手
典型文献
A chemo-mechanical switchable valve on microfluidic chip based on a thermally responsive block copolymer
文献摘要:
Microfluidic devices have become a powerful tool for chemical and biologic applications.To control dif-ferent functional parts on the microchip,valve plays a key role in the device.In conventional methods,physio-mechanical valves are usually used on microfluidic chip.Herein,we reported a chemo-mechanical switchable valve on microfluidic chip by using a thermally responsive block copolymer.The wettability changes of capillary with copolymer modification on inner surface were investigated to verify the func-tion as a valve.Capillaries with modification of poly-(N-isopropylacrylamide-co-hexafluoroisopropyl acry-late)(P(NIPAAm-co-HFIPA))with a 20%HFIPA was demonstrated capable of control aqueous solution stop or go through.Then short capillaries with copolymer modification were integrated in microchannels as valves.With the temperature changing around lower critical solution temperature(LCST),the integrated chemo-mechanical switchable valve exhibited excellent"OPEN-CLOSE"behavior for microflow control.After optimization of the block copolymer sequences and molar ratio,a switching time as low as 20 s was achieved.The developed micro valve was demonstrated effective for flow control on microchip.
文献关键词:
作者姓名:
Sifeng Mao;Xiaohong Hu;Yumi Tanaka;Lin Zhou;Chenhan Peng;Nahoko Kasai;Hizuru Nakajima;Shungo Kato;Katsumi Uchiyama
作者机构:
Department of Applied Chemistry,Graduate School of Urban Environmental Sciences,Tokyo Metropolitan University,Hachioji-shi,Tokyo 192-0397,Japan;University Education Center,Tokyo Metropolitan University,Hachioji-shi,Tokyo 192-0397,Japan
引用格式:
[1]Sifeng Mao;Xiaohong Hu;Yumi Tanaka;Lin Zhou;Chenhan Peng;Nahoko Kasai;Hizuru Nakajima;Shungo Kato;Katsumi Uchiyama-.A chemo-mechanical switchable valve on microfluidic chip based on a thermally responsive block copolymer)[J].中国化学快报(英文版),2022(06):3083-3086
A类:
Capillaries,hexafluoroisopropyl,acry,HFIPA,CLOSE
B类:
chemo,mechanical,switchable,microfluidic,thermally,responsive,block,copolymer,Microfluidic,devices,have,become,powerful,tool,chemical,biologic,applications,To,control,ferent,functional,parts,microchip,plays,key,role,In,conventional,methods,physio,valves,are,usually,used,Herein,reported,by,using,wettability,changes,capillary,modification,inner,surface,were,investigated,verify,isopropylacrylamide,late,NIPAAm,was,demonstrated,capable,aqueous,solution,stop,go,through,Then,short,capillaries,integrated,microchannels,With,temperature,changing,around,lower,critical,LCST,exhibited,excellent,OPEN,behavior,microflow,After,optimization,sequences,molar,ratio,switching,achieved,developed,effective
AB值:
0.505262
相似文献
Rapid fabrication of zwitterionic sulfobetaine vinylimidazole-based monoliths via photoinitiated copolymerization for hydrophilic interaction chromatography
Qiqin Wang;Lingjue Sun;Huihui Wu;Ning Deng;Xianglong Zhao;Jingwei Zhou;Tingting Zhang;Hai Han;Zhengjin Jiang-Institute of Pharmaceutical Analysis,College of Pharmacy,Jinan University,Guangzhou,510632,China;Anhui Prevention and Treatment Center for Occupational Disease,Anhui No.2 Provincial People's Hospital,Hefei,230041,China;Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education,Lab of Biochemistry,College of Chemistry,Xiangtan University,Xiangtan,Hunan,411105,China;Department of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine&New Drug Research,Jinan University,Guangzhou,510632,China
In situ neutron diffraction unravels deformation mechanisms of a strong and ductile FeCrNi medium entropy alloy
L.Tang;F.Q.Jiang;J.S.Wróbel;B.Liu;S.Kabra;R.X.Duan;J.H.Luan;Z.B.Jiao;M.M.Attallah;D.Nguyen-Manh;B.Cai-School of Metallurgy and Materials,University of Birmingham,B15 2TT,United Kingdom;Institute of Metal Research,Chinese Academy of Sciences,Shenyang 110016,China;Faculty of Materials Science and Engineering,Warsaw University of Technology,ul.Wo?oska 141,Warsaw 02-507,Poland;State Key Laboratory for Powder Metallurgy,Central South University,Changsha 410083,China;Rutherford Appleton Laboratory,ISIS Facility,Didcot OX11 0QX,United Kingdom;Department of Materials Science and Engineering,City University of Hong Kong,Kowloon,Hong Kong,China;Department of Mechanical Engineering,The Hong Kong Polytechnic University,Hung Hom,Hong Kong,China;CCFE,United Kingdom Atomic Energy Authority,Abingdon,Oxfordshire OX14 3DB,United Kingdom
Tailoring precipitation/properties and related mechanisms for a high-strength aluminum alloy plate via low-temperature retrogression and re-aging processes
L.G.Hou;H.Yu;Y.W.Wang;L.You;Z.B.He;C.M.Wu;D.G.Eskin;L.Katgerman;L.Z.Zhuang;J.S.Zhang-State Key Laboratory for Advanced Metals&Materials,University of Science&Technology Beijing,Beijing 100083,China;BCAST,Brunel University London,Kingston Lane,Uxbidge Middlesex UB8 3PH,United Kingdom;Nanjing Advanced Transportation Equipment New Technology Research Institute,Nanjing 211800,China;Institute of mineral resources,Chinese Academy of Geological Sciences,Beijing 100037,China;Tomsk State University,Tomsk,634050,Russian Federation;Katgerman Aluminium Technology,van Beuningenlaan 10,2334CC Leiden,NetherlandsDepartment of Materials Science and Engineering,Delft University of Technology,Mekelweg 2,2628CD Delft,the Netherlands
Highly transmitted silver nanowires-SWCNTs conductive flexible film by nested density structure and aluminum-doped zinc oxide capping layer for flexible amorphous silicon solar cells
Shunliang Gao;Xiaohui Zhao;Qi Fu;Tianchi Zhang;Jun Zhu;Fuhua Hou;Jian Ni;Chengjun Zhu;Tiantian Li;Yanlai Wang;Vignesh Murugadoss;Gaber A.M.Mersal;Mohamed M.Ibrahim;Zeinhom M.El-Bahy;Mina Huang;Zhanhu Guo-The Key Laboratory of Semiconductor Photovoltaic Technology at Universities of Inner Mongolia Autonomous Region,College of Physical Science and Technology,Inner Mongolia University,Hohhot 010021,China;Department of Electronic Science and Technology,School of Electronic Information and Optical Engineering,Nankai University,Tianjin 300350,China;Advanced Materials Division,Engineered Multifunctional Composites(EMC)Nanotech LLC,Knoxville,TN 37934,United States;Integrated Composites Laboratory(ICL),Department of Chemical and Bimolecular Engineering,University of Tennessee,Knoxville,TN 37996,United States;Department of Chemistry,College of Science,Taif University,P.O.Box 11099,Taif 21944,Saudi Arabia;Department of Chemistry,Faculty of Science,Al-Azhar University,Nasr City 11884,Cairo,Egypt;College of Materials Science and Engineering,Taiyuan University of Science and Technology,Taiyuan 030024,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。