首站-论文投稿智能助手
典型文献
Dopant-free small molecule hole transport materials based on triphenylamine derivatives for perovskite solar cells
文献摘要:
In the past decade,perovskite solar cells have become a promising candidate in the photovoltaic industry owing to their high power conversion efficiency that surpasses 25%.However,there are certain limita-tions that have hindered the development and full-scale practical application of these cells,including the high cost and degradation of perovskite caused by the dopants.Hence,there is an urgent need to develop dopant-free hole transport materials(HTMs).In recent years,HTMs based on triphenylamine(TPA-HTMs)are receiving growing interest owing to their high hole mobility,excellent film formation,and suitable energy levels.The literature here covers work relevant to TPA-HTMs in the last five years.They have been classified according to different core types.The correlations between performance and structure are summarized,and the future development trend of TPA-HTMs is highlighted.
文献关键词:
作者姓名:
Sihan Li;Yuxuan Yang;Kuo Su;Bao Zhang;Yaqing Feng
作者机构:
School of Chemical Engineering and Technology,Tianjin University,Tianjin 300350,China;Collaborative Innovation Center of Chemical Science and Engineering(Tianjin),Tianjin 300072,China;Jieyang Center of Guangdong Laboratory of Chemistry and Fine Chemicals,Guangdong 515557,China
引用格式:
[1]Sihan Li;Yuxuan Yang;Kuo Su;Bao Zhang;Yaqing Feng-.Dopant-free small molecule hole transport materials based on triphenylamine derivatives for perovskite solar cells)[J].中国化学工程学报(英文版),2022(10):29-42
A类:
Dopant
B类:
free,small,molecule,hole,transport,materials,triphenylamine,derivatives,perovskite,solar,cells,In,past,decade,have,become,promising,candidate,photovoltaic,industry,their,power,conversion,efficiency,that,surpasses,However,there,are,certain,limita,hindered,development,full,scale,practical,application,these,including,cost,degradation,caused,by,dopants,Hence,urgent,need,HTMs,recent,years,TPA,receiving,growing,interest,mobility,excellent,film,formation,suitable,energy,levels,literature,covers,work,relevant,last,five,They,been,classified,according,different,core,types,correlations,between,performance,structure,summarized,future,trend,highlighted
AB值:
0.586206
相似文献
Highly transmitted silver nanowires-SWCNTs conductive flexible film by nested density structure and aluminum-doped zinc oxide capping layer for flexible amorphous silicon solar cells
Shunliang Gao;Xiaohui Zhao;Qi Fu;Tianchi Zhang;Jun Zhu;Fuhua Hou;Jian Ni;Chengjun Zhu;Tiantian Li;Yanlai Wang;Vignesh Murugadoss;Gaber A.M.Mersal;Mohamed M.Ibrahim;Zeinhom M.El-Bahy;Mina Huang;Zhanhu Guo-The Key Laboratory of Semiconductor Photovoltaic Technology at Universities of Inner Mongolia Autonomous Region,College of Physical Science and Technology,Inner Mongolia University,Hohhot 010021,China;Department of Electronic Science and Technology,School of Electronic Information and Optical Engineering,Nankai University,Tianjin 300350,China;Advanced Materials Division,Engineered Multifunctional Composites(EMC)Nanotech LLC,Knoxville,TN 37934,United States;Integrated Composites Laboratory(ICL),Department of Chemical and Bimolecular Engineering,University of Tennessee,Knoxville,TN 37996,United States;Department of Chemistry,College of Science,Taif University,P.O.Box 11099,Taif 21944,Saudi Arabia;Department of Chemistry,Faculty of Science,Al-Azhar University,Nasr City 11884,Cairo,Egypt;College of Materials Science and Engineering,Taiyuan University of Science and Technology,Taiyuan 030024,China
Surface passivation and hole extraction:Bifunctional interfacial engineering toward high-performance all-inorganic CsPbIBr2 perovskite solar cells with efficiency exceeding 12%
Qi Liu;Junming Qiu;Xianchang Yan;Yuemeng Fei;Yue Qiang;Qingyan Chang;Yi Wei;Xiaoliang Zhang;Wenming Tian;Shengye Jin;Ze Yu;Licheng Sun-State Key Laboratory of Fine Chemicals,Dalian University of Technology(DUT),Dalian 116024,Liaoning,China;School of Materials Science and Engineering,Beihang University,Beijing 100191,China;State Key Laboratory of Molecular Reaction Dynamics and the Dynamic Research Center for Energy and Environmental Materials,Dalian Institute of Chemical Physics,Chinese Academy of Sciences,Dalian 116023,Liaoning,China;Key Laboratory of Materials Modification by Laser,Ion,and Electron Beams(Ministry of Education),Dalian University of Technology(DUT),Dalian 116024,Liaoning,China;Center of Artificial Photosynthesis for Solar Fuels,School of Science,Westlake University,Hangzhou 310024,Zhejiang,China;Department of Chemistry,School of Engineering Sciences in Chemistry,Biotechnology and Health,KTH Royal Institute of Technology,10044 Stockholm,Sweden
Low-cost polymer acceptors with noncovalently fused-ring backbones for efficient all-polymer solar cells
Xiaobin Gu;Yanan Wei;Xingzheng Liu;Na Yu;Laiyang Li;Ziyang Han;Jinhua Gao;Congqi Li;Zhixiang Wei;Zheng Tang;Xin Zhang;Hui Huang-College of Materials Science and Opto-Electronic Technology,Center of Materials Science and Optoelectronics Engineering,CAS Center for Excellence in Topological Quantum Computation,CAS Key Laboratory of Vacuum Physics,University of Chinese Academy of Sciences,Beijing 100049,China;Center for Advanced Low-dimension Materials,State Key Laboratory for Modification of Chemical Fibers and Polymer Materials,College of Materials Science and Engineering,Donghua University,Shanghai 201620,China;CAS Key Laboratory of Nanosystem and Hierarchical Fabrication,CAS Center for Excellence in Nanoscience,National Center for Nanoscience and Technology,Beijing 100190,China
Lowing the energy loss of organic solar cells by molecular packing engineering via multiple molecular conjugation extension
Hongbin Chen;Yalu Zou;Huazhe Liang;Tengfei He;Xiaoyun Xu;Yunxin Zhang;Zaifei Ma;Jing Wang;Mingtao Zhang;Quanwen Li;Chenxi Li;Guankui Long;Xiangjian Wan;Zhaoyang Yao;Yongsheng Chen-State Key Laboratory and Institute of Elemento-Organic Chemistry,Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials,Renewable Energy Conversion and Storage Center(RECAST),College of Chemistry,Nankai University,Tianjin 300071,China;School of Materials Science and Engineering,National Institute for Advanced Materials,Renewable Energy Conversion and Storage Center(RECAST),Nankai University,Tianjin 300350,China;State Key Laboratory for Modification of Chemical Fibers and Polymer Materials,Center for Advanced Low-dimension Materials,College of Materials Science and Engineering,Donghua University,Shanghai 201620,China;School of Materials Science&Engineering,Tianjin University of Technology,Tianjin 300384,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。