首站-论文投稿智能助手
典型文献
Novel closed-cycle reaction mode for totally green production of Cu1.8Se nanoparticles based on laser-generated Se colloidal solution
文献摘要:
Non-stoichiometric copper selenide(Cu2-xSe,x=0.18~0.25)nanomaterials have attracted extensive attentions due to their excellent thermoelectric,optoelectronic and photocatalytic performances.However,efficient production of Cu2-xSe nanoparticles(NPs)through a green and convenient way is still hindered by the inevitable non-environmentally friendly operations in common chemical synthesis.Herein,we initially reveal the coexistence of seleninic acid content and elemental selenium(Se)NPs in pulsed laser-generated Se colloidal solution.Consequently,we put forward firstly a closed-cycle reaction mode for totally green production of Cu1.8Se NPs to exclude traditional requirements of high temperature and toxic precursors by using Se colloidal solution.In such closed-cycle reaction,seleninic acid works as the initiator to oxidize copper sheet to release cuprous ions which can catalyze the disproportion of Se NPs to form SeO3 and Se2-ions and further produce Cu2-xSe NPs,and the by-product SeO32-ions promote subsequent formation of cuprous from the excessive Cu sheet.In experiments,the adequate copper(Cu)sheet was simply dipped into such Se colloidal solution at 70℃,and then the stream of Cu1.8Se NPs could be produced until the exhaustion of selenium source.The conversion rate of Se element reaches to more than 75%when the size of Se NPs in weakly acidic colloidal solution is limited between 1 nm and 50 nm.The laser irradiation duration shows negative correlation with the size of Se NPs and unobvious impact to the pH of the solution which both are essential to the high yield of Cu1.8Se NPs.Before Cu sheet is exhausted,Se colloidal solution can be successively added without influences to the product quality and the Se conversion rate.Such green methodology positively showcases a brand-new and potential strategy for mass production of Cu2-xSe nanomaterials.
文献关键词:
作者姓名:
Zhangyu Gu;Yisong Fan;Yixing Ye;Yunyu Cai;Jun Liu;Shouliang Wu;Pengfei Li;Junhua Hu;Changhao Liang;Yao Ma
作者机构:
Henan Institute of Advanced Technology,Zhengzhou University,Zhengzhou 450001,China;Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology,Institute of Solid State Physics,Hefei Institutes of Physical Science,Chinese Academy of Sciences,Hefei 230031,China;Anhui Institute of Optics and Fine Mechanics,Hefei Institutes of Physical Science,Chinese Academy of Sciences,Hefei 230031,China;School of Materials Science and Engineering,Zhengzhou University,Zhengzhou 450001,China;University of Science and Technology of China,Hefei 230026,China;Technology Center,Benecke Changshun Auto Trim(Zhangjiagang)Co.,Ltd.,No.8,Changyang Rd.,Nansha,Jingang Town,Zhangjiagang 215632,China
引用格式:
[1]Zhangyu Gu;Yisong Fan;Yixing Ye;Yunyu Cai;Jun Liu;Shouliang Wu;Pengfei Li;Junhua Hu;Changhao Liang;Yao Ma-.Novel closed-cycle reaction mode for totally green production of Cu1.8Se nanoparticles based on laser-generated Se colloidal solution)[J].中国物理B(英文版),2022(07):46-53
A类:
8Se,seleninic,disproportion
B类:
Novel,closed,cycle,reaction,mode,totally,green,production,Cu1,nanoparticles,laser,generated,colloidal,solution,Non,stoichiometric,copper,selenide,Cu2,xSe,nanomaterials,have,attracted,extensive,attentions,due,their,excellent,thermoelectric,optoelectronic,photocatalytic,performances,However,efficient,NPs,through,convenient,way,still,hindered,by,inevitable,environmentally,friendly,operations,common,chemical,synthesis,Herein,initially,reveal,coexistence,content,elemental,selenium,pulsed,Consequently,put,forward,firstly,exclude,traditional,requirements,high,temperature,toxic,precursors,using,In,such,works,initiator,oxidize,sheet,release,cuprous,which,can,catalyze,Se2,further,SeO32,promote,subsequent,formation,from,excessive,experiments,adequate,was,simply,dipped,into,then,stream,could,produced,until,exhaustion,source,conversion,reaches,more,than,when,size,weakly,acidic,limited,between,irradiation,duration,shows,negative,correlation,unobvious,impact,both,are,essential,yield,Before,exhausted,successively,added,without,influences,quality,Such,methodology,positively,showcases,brand,new,potential,strategy,mass
AB值:
0.507781
相似文献
Surface-rare-earth-rich upconversion nanoparticles induced by heterovalent cation exchange with superior loading capacity
Meifeng Wang;Yiru Qin;Wei Shao;ZhiWang Cai;Xiaoyu Zhao;Yongjun Hu;Tao Zhang;Sheng Li;Mark T.Swihart;Yang Liu;Wei Wei-MOE&Guangdong Provincial Key Laboratory of Laser Life Science,Guangzhou Key Laboratory of Spectral Analysis and Functional Probes,College of Biophotonics,South China Normal University,Guangzhou 510631,China;Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology,Institute of Insect Science and Technology&School of Life Sciences,South China Normal University,Guangzhou 510631,China;State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering,Zhejiang University of Technology,Hangzhou 310014,China;Department of Chemical and Biological Engineering,University at Buffalo,the State University of New York,Buffalo,NY 14260,United States
Effect of solid-solution strengthening on deformation mechanisms and strain hardening in medium-entropy V1-xCrxCoNi alloys
Hyun Chung;Dae Woong Kim;Woo Jin Cho;Heung Nam Han;Yuji Ikeda;Shoji Ishibashi;Fritz K?rmann;Seok Su Sohn-Department of Materials Science and Engineering,Korea University,Seoul 02841,South Korea;Center for High Entropy Alloys,Pohang University of Science and Technology,Pohang 37673,South Korea;Department of Materials Science and Engineering and Research Institute of Advanced Materials,Seoul National University,Seoul 08826,South Korea;Institute for Materials Science,University of Stuttgart,Pfaffenwaldring 55,Stuttgart 70569,Germany;Computational Materials Design,Max-Planck-Institut für Eisenforschung GmbH,Max-Planck-Strabe 1,Düisseldorf 40237,Germany;Research Center for Computational Design of Advanced Functional Materials(CD-Fmat),National Institute of Advanced Industrial Science and Technology(AIST),Tsukuba,Ibaraki 305-8568,Japan;Department of Materials Science and Engineering,Delft University of Technology,Mekelweg,2,Delft 2628 CD,the Netherlands
Se-NiSe2 hybrid nanosheet arrays with self-regulated elemental Se for efficient alkaline water splitting
Xiang Peng;Yujiao Yan;Shijian Xiong;Yaping Miao;Jing Wen;Zhitian Liu;Biao Gao;Liangsheng Hu;Paul K.Chu-Hubei Key Laboratory of Plasma Chemistry and Advanced Materials,Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials,Wuhan Institute of Technology,Wuhan 430205,China;Department of Physics,Department of Materials Science and Engineering,Department of Biomedical Engineering,City University of Hong Kong,Tat Chee Avenue,Kowloon,Hong Kong,China;School of Textile Science and Engineering,Xi'an Polytechnic University,Xi'an 710048,China;State Key Laboratory of Refractories and Metallurgy,Institute of Advanced Materials and Nanotechnology,Wuhan University of Science and Technology,Wuhan 430081,China;Department of Chemistry,Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province,Shantou University,Shantou 515063,China
Highly transmitted silver nanowires-SWCNTs conductive flexible film by nested density structure and aluminum-doped zinc oxide capping layer for flexible amorphous silicon solar cells
Shunliang Gao;Xiaohui Zhao;Qi Fu;Tianchi Zhang;Jun Zhu;Fuhua Hou;Jian Ni;Chengjun Zhu;Tiantian Li;Yanlai Wang;Vignesh Murugadoss;Gaber A.M.Mersal;Mohamed M.Ibrahim;Zeinhom M.El-Bahy;Mina Huang;Zhanhu Guo-The Key Laboratory of Semiconductor Photovoltaic Technology at Universities of Inner Mongolia Autonomous Region,College of Physical Science and Technology,Inner Mongolia University,Hohhot 010021,China;Department of Electronic Science and Technology,School of Electronic Information and Optical Engineering,Nankai University,Tianjin 300350,China;Advanced Materials Division,Engineered Multifunctional Composites(EMC)Nanotech LLC,Knoxville,TN 37934,United States;Integrated Composites Laboratory(ICL),Department of Chemical and Bimolecular Engineering,University of Tennessee,Knoxville,TN 37996,United States;Department of Chemistry,College of Science,Taif University,P.O.Box 11099,Taif 21944,Saudi Arabia;Department of Chemistry,Faculty of Science,Al-Azhar University,Nasr City 11884,Cairo,Egypt;College of Materials Science and Engineering,Taiyuan University of Science and Technology,Taiyuan 030024,China
Osteogenic and antibacterial ability of micro-nano structures coated with ZnO on Ti-6Al-4V implant fabricated by two-step laser processing
Yi Wan;Zihe Zhao;Mingzhi Yu;Zhenbing Ji;Teng Wang;Yukui Cai;Chao Liu;Zhanqiang Liu-Key Laboratory of High Efficiency and Clean Manufacturing,School of Mechanical Engineering,Shandong University,Jinan 250061,China;Centre of Micro/Nano Manufacturing Technology(MNMT-Dublin),School of Mechanical and Materials Engineering,University College Dublin,Dublin D04 KW52,Ireland;School of Engineering Sciences in Chemistry,Biotechnology and Health,KTH Royal,Institute of Technology,Stockholm,Stockholm S-10044,Sweden;Department of Oral and Maxilofacial Surgery,Qilu Hospital of Shandong University,Jinan 250012,China;Department of Oral Surgery,Shanghai Ninth People's Hospital,Shanghai Jiao Tong University School of Medicine; College of Stomatology,Shanghai Jiao Tong University,National Center for Stomatology; National Clinical Research Center for Oral Diseases;Shanghai Key Laboratory of Stomatology, Shanghai 200011,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。