典型文献
Phase equilibrium studies of titanomagnetite and ilmenite smelting slags
文献摘要:
The phase equilibrium information of slag plays an important role in pyrometallurgical processes to obtain optimum fluxing condi-tions and operating temperatures. The smelting reduction of titanomagnetite and ilmenite ores in an iron blast furnace (BF) can form Ti(C,N) particles, causing the increased viscosities of slag and hot metal. HIsmelt has been developed in recent years for ironmaking and does not need coke and sinter. The formation of Ti(C,N) in the HIsmelt process is avoided because the oxygen partial pressure in the process is higher than that in the BF. The smelting of TiO2-containing ores in the HIsmelt process results in Al2O3–MgO–SiO2–CaO–TiO2 slag. Phase equilibrium in this slag system has been investigated using equilibration, quenching, and electron probe microanalysis techniques. The experimental results were presented in two pseudo-binary sections, which represent the process of HIsmelt for the treatment of 100% titanomagnetite ore and mixed titanomagnetite+ilmenite ore (mass ratio of 2:1), respectively. The primary phases observed in the composition range investigated include pseudo-brookite M3O5 (MgO·2TiO2–Al2O3·TiO2), spinel (MgO·Al2O3), perovskite CaTiO3, and rutile TiO2. The results show that the liquidus temperatures decrease in the TiO2 and M3O5 primary phase fields and increase in the spinel and CaTiO3 primary phase fields with the increase in CaO concentration. The calculation of solid-phase fractions from the experimental data has been demonstrated. The effect of basicity on the liquidus temperatures of the slag has been discussed. The smelting of titanomagnetite plus ilmenite ores has significant advantages to obtain low-sulfur hot metal and high-TiO2 slag. Experimentally determined liquidus temperatures were compared with the FactSage predictions to evaluate the existing thermodynamic databases.
文献关键词:
中图分类号:
作者姓名:
Jinfa Liao;Baojun Zhao
作者机构:
International Research Institute for Resources,Energy,Environment and Materials,Jiangxi University of Science and Technology,Ganzhou 341000,China;Sustainable Minerals Institute,University of Queensland,Brisbane,Saint Lucia 4072,Australia
文献出处:
引用格式:
[1]Jinfa Liao;Baojun Zhao-.Phase equilibrium studies of titanomagnetite and ilmenite smelting slags)[J].矿物冶金与材料学报,2022(12):2162-2171
A类:
titanomagnetite+ilmenite,brookite,M3O5,2TiO2
B类:
Phase,equilibrium,studies,smelting,slags,information,plays,important,role,pyrometallurgical,processes,obtain,optimum,fluxing,condi,operating,temperatures,reduction,ores,blast,furnace,BF,particles,causing,increased,viscosities,hot,HIsmelt,been,developed,recent,years,ironmaking,does,not,need,coke,sinter,avoided,because,oxygen,partial,pressure,higher,than,that,containing,results,Al2O3,MgO,SiO2,CaO,this,system,investigated,equilibration,quenching,electron,probe,microanalysis,techniques,experimental,were,presented,two,pseudo,binary,sections,which,represent,treatment,mixed,mass,respectively,primary,phases,observed,composition,range,include,spinel,perovskite,CaTiO3,rutile,show,liquidus,decrease,fields,concentration,calculation,solid,fractions,from,demonstrated,effect,basicity,discussed,plus,significant,advantages,low,sulfur,Experimentally,determined,compared,FactSage,predictions,evaluate,existing,thermodynamic,databases
AB值:
0.45041
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。