典型文献
基于改进U-Net的自动聚焦相衬技术在细胞成像中的应用
文献摘要:
本文针对普通显微镜相衬成像需要手动聚焦、切换相位板等问题,提出了一种基于深度学习的自动聚焦相衬显微方法,并且基于该方法设计了一种基于U-Net的网络框架.在该网络框架中引入残差模块和空间注意力机制,目的是使网络更好地利用特征图之间的关系,同时使用密集模块加强特征信息复用,以提高网络的性能.采用三种不同类型的样本在不同的焦距下进行训练网络,数值计算和实验结果表明,所提方法可以快速、精准地实现自动聚焦相衬成像,并达到去噪的效果.此外,将本文所提网络框架与U-Net、生成对抗网络进行了比较,较高的SSIM值显示了所提网络框架的优势.最后,使用基于少量数据集即可完成训练的生成对抗网络对自动聚焦相衬成像进行验证,证明了该方法的可行性.本文所提出的基于改进U-Net的自动聚焦相衬成像方法有助于细胞生物学研究.
文献关键词:
医用光学;深度学习;相衬显微;自动聚焦;U-Net
中图分类号:
作者姓名:
杨柳;王华英;董昭;郭海军;王杰宇;王文健
作者机构:
河北工程大学数理科学与工程学院,河北邯郸056038
文献出处:
引用格式:
[1]杨柳;王华英;董昭;郭海军;王杰宇;王文健-.基于改进U-Net的自动聚焦相衬技术在细胞成像中的应用)[J].中国激光,2022(15):127-136
A类:
相衬显微
B类:
Net,自动聚焦,细胞成像,通显,换相,相位板,方法设计,网络框架,残差模块,空间注意力机制,特征图,特征信息,复用,三种不同类型,焦距,去噪,生成对抗网络,SSIM,少量数据,成像方法,细胞生物学,生物学研究,医用光学
AB值:
0.296841
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。