典型文献
一种基于电化学阻抗谱的大规模退役锂离子电池的软聚类方法
文献摘要:
退役锂离子电池的分选目前存在效率与精度不可兼得的问题,严重制约大规模退役锂电池梯次利用的经济性与安全性.该文针对以上问题,提出一种基于电化学阻抗谱(EIS)的退役锂离子电池软聚类方法.首先,对退役锂离子电池进行EIS测试和弛豫时间(DRT)分析,利用B P神经网络建立电池容量与D RT关联模型,并用于大规模电池容量的快速估计.然后,构建电池容量、欧姆内阻与D RT特征等六维度判据,在此基础上提出一种基于高斯混合模型的电池软聚类方法.该方法在考虑电池内部重要电化学特征的基础上实现了退役锂离子电池的软聚类,大大提高了聚类结果的准确性与灵活性.最后,通过计算轮廓系数和进行混合脉冲功率特性(HPPC)实验对聚类结果进行验证.实验结果表明,获取电池容量的时间由标准容量测试的3h缩短到10min,容量预测误差控制在4%以内;所提出的软聚类分类方法能提高电池重组的灵活性,并能保证重组电池具有很好的一致性.
文献关键词:
容量估计;退役锂离子电池;软聚类;电化学阻抗谱;弛豫时间
中图分类号:
作者姓名:
来鑫;陈权威;邓聪;韩雪冰;郑岳久
作者机构:
上海理工大学机械工程学院 上海 200093;清华大学车辆与运载学院 北京 100084
文献出处:
引用格式:
[1]来鑫;陈权威;邓聪;韩雪冰;郑岳久-.一种基于电化学阻抗谱的大规模退役锂离子电池的软聚类方法)[J].电工技术学报,2022(23):6054-6064
A类:
B类:
电化学阻抗谱,退役锂离子电池,软聚类,聚类方法,分选,选目,不可兼得,锂电池,梯次利用,EIS,弛豫时间,DRT,电池容量,关联模型,欧姆内阻,六维度,判据,高斯混合模型,池内,化学特征,轮廓系数,脉冲功率,功率特性,HPPC,容量测试,3h,10min,容量预测,预测误差,误差控制,聚类分类,分类方法,容量估计
AB值:
0.281274
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。