典型文献
时空特征金字塔模块下的视频行为识别
文献摘要:
目前用于视频行为识别的主流2D卷积神经网络方法无法提取输入帧之间的相关信息,导致网络无法获得输入帧间的时空特征信息进而难以提升识别精度.针对目前主流方法存在的问题,提出了通用的时空特征金字塔模块(STFPM).STFPM由特征金字塔和空洞卷积金字塔两部分组成,并能直接嵌入到现有的2D卷积神经网络中构成新的行为识别网络——时空特征金字塔网络(STFP-Net).针对多帧图像输入,STFP-Net首先提取每帧输入的单独空域特征信息,并将这些特征信息记为原始特征;然后,所设计的STFPM利用矩阵转换操作对原始特征构建特征金字塔;其次,利用空洞卷积金字塔对构建的原始特征金字塔提取具有时空关联性的时序特征;接着,将原始特征与时序特征进行加权融合并传递给后续深层网络;最后,利用全连接对网络输出特征进行分类识别.与Baseline相比,STFP-Net引入了可忽略不计的额外参数和计算量.实验结果表明,与近些年主流方法相比,STFP-Net在主流数据库UCF101和HMDB51上的分类准确度具有明显提升.
文献关键词:
行为识别;2D卷积网络;时空特征;特征金字塔;空洞卷积金字塔
中图分类号:
作者姓名:
龚苏明;陈莹
作者机构:
江南大学 轻工过程先进控制教育部重点实验室,江苏 无锡 214122
文献出处:
引用格式:
[1]龚苏明;陈莹-.时空特征金字塔模块下的视频行为识别)[J].计算机科学与探索,2022(09):2061-2067
A类:
STFPM,STFP
B类:
时空特征,塔模,视频行为识别,2D,神经网络方法,特征信息,识别精度,主流方法,空洞卷积金字塔,识别网络,特征金字塔网络,Net,多帧图像,空域,记为,特征构建,时空关联性,时序特征,加权融合,递给,深层网络,全连接,分类识别,Baseline,忽略不计,计算量,流数据,UCF101,HMDB51,卷积网络
AB值:
0.247085
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。