首站-论文投稿智能助手
典型文献
改进YOLOv5算法的钢筋端面检测
文献摘要:
钢筋是基建行业不可或缺的结构材料,无论是钢筋生产过程、还是施工现场,对钢筋进行准确计数是必不可少的环节.成捆钢筋存在端面密集、直径尺度不统一、端面边界粘连、端面与背景融合、端面之间存在遮挡等问题.针对上述问题,提出了一种改进的YOLOv5模型框架,以降低密集小目标漏检率、误检率.针对钢筋端面数据集稀缺、没有公开的大型数据集并且钢筋端面特征较弱的问题,自建了钢筋端面数据集,使用半自动标注法对数据集进行标注,并采用数据增强算法对钢筋端面数据集进行扩充.修改了YOLOv5中的主干网络,增加空间金字塔池(spatial pyramid pooling,SPP)和小目标检测层,以获取更大的特征图;使用特征金字塔模型(feature pyramid network,FPN)和路径聚合网络(path aggregation network,PAN)对多尺度特征图融合,提高密集小目标检测精度.在Data Fountain钢筋盘点竞赛数据集和自建钢筋数据集上设计了多组对照试验.实验结果表明,提出的改进算法YOLOv5-P2模型对钢筋端面的检测效果最佳,钢筋端面平均精度均值(mean average precision,mAP)达到了99.9%,相比于YOLOv3、YOLOv4、ScaledYOLOv4以及YOLOv5主流算法,模型的mAP分别提升了9.6%、7.9%、7.0%、1.1%,在工厂真实环境条件下进行测试时都有较稳定的表现,在测试集上相对于原始模型检测精度提升了2.1%.通过修改YOLOv5的主干网络中SPP模块位置和增加检测层都能够显著提升密集小目标检测精度,更好的提取到钢筋端面的边缘特征,取得99.9%的平均精度均值.
文献关键词:
深度学习;YOLOv5;数据增强;钢筋计数;密集小目标检测;检测方法;卷积神经网络
作者姓名:
王超;张运楚;孙绍涵;张汉元
作者机构:
山东建筑大学信息与电气工程学院,济南250101;山东省智能建筑技术重点实验室,济南250101
文献出处:
引用格式:
[1]王超;张运楚;孙绍涵;张汉元-.改进YOLOv5算法的钢筋端面检测)[J].计算机系统应用,2022(04):68-80
A类:
密集小目标检测,ScaledYOLOv4,钢筋计数
B类:
YOLOv5,端面,基建行业,结构材料,施工现场,粘连,背景融合,遮挡,模型框架,漏检率,误检率,稀缺,半自动标注,数据增强,增强算法,主干网络,空间金字塔,spatial,pyramid,pooling,SPP,小目标检测层,使用特征,特征金字塔,金字塔模型,feature,network,FPN,路径聚合网络,path,aggregation,PAN,多尺度特征图,图融合,检测精度,Data,Fountain,盘点,对照试验,改进算法,P2,检测效果,平均精度均值,mean,average,precision,mAP,YOLOv3,流算法,真实环境,测试集,模型检测,精度提升,取到,边缘特征
AB值:
0.32034
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。