典型文献
MOb–GRU神经网络工业软测量建模方法与输出预测
文献摘要:
由于工业过程具有强非线性、动态特性与慢时变性,其完整性建模相对较难.针对工业过程的现有软测量技术并未综合考虑过程的非线性和动态特性,本文提出了一种依赖模型阶次的GRU(MOb–GRU)神经网络软测量模型,针对非线性动态过程进行全动态建模.首先,在MOb–GRU的结构选择上,本文根据所研究实际对象的动态特性复杂程度确定网络的总模块数.另外,MOb–GRU能灵活设置反向更新的单元数,这种设置打破了传统GRU只能从第1个模块开始输出的限制.其次,为使记忆网络以较快的速率收敛到最优,本文分别设计了基于自适应学习率和学习率矩阵的网络训练算法.接着,仿真实验分别选取了典型的单变量与多变量非线性动态过程,并采用MOb–GRU神经网络对其进行建模和预测.最后,仿真结果证实了MOb–GRU网络结构的合理性以及训练算法的高效性.
文献关键词:
软测量技术;MOb—GRU;非线性动态;自适应学习率;神经网络
中图分类号:
作者姓名:
王珠;刘佳璇
作者机构:
中国石油大学(北京) 自动化系,北京102249
文献出处:
引用格式:
[1]王珠;刘佳璇-.MOb–GRU神经网络工业软测量建模方法与输出预测)[J].控制理论与应用,2022(09):1758-1768
A类:
MOb
B类:
GRU,软测量建模,输出预测,工业过程,强非线性,动态特性,慢时变,时变性,软测量技术,依赖模型,阶次,软测量模型,非线性动态,动态过程,动态建模,结构选择,复杂程度,记忆网络,自适应学习率,网络训练,训练算法,多变量
AB值:
0.270079
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。