首站-论文投稿智能助手
典型文献
Environment-friendly surface cleaning using micro-nano bubbles
文献摘要:
Cleaning a surface using a solution containing a large number of micro to nano scale bubbles has sig-nificant advantage regarding environmental protection.This review first briefly introduces the cleaning mechanism of micro-nano bubbles(MNBs),including physical and chemical effects.Then the applica-tions of MNBs in cleaning of metal parts,precision parts,cultural relics or food are introduced.After that,coupled cleaning method of ultrasound and bubbles is introduced.Finally,the characterization methods for the cleaning effect are introduced,which mainly focuses on the changes of physico-chemical prop-erties(mass or cleaning area,infiltration,colony number and light scattering intensity)of the cleaned parts or that(like conductivity)of the solvent.It is believed that MNBs technology will be applied in a broader range of surface cleaning applications.
文献关键词:
作者姓名:
Nuo Jin;Fenghua Zhang;Yan Cui;Le Sun;Haoxiang Gao;Ziang Pu;Weimin Yang
作者机构:
College of Mechanical and Electrical Engineering,Beijing University of Chemical Technology,Beijing 100029,China
引用格式:
[1]Nuo Jin;Fenghua Zhang;Yan Cui;Le Sun;Haoxiang Gao;Ziang Pu;Weimin Yang-.Environment-friendly surface cleaning using micro-nano bubbles)[J].颗粒学报(英文版),2022(07):1-9
A类:
B类:
Environment,friendly,surface,cleaning,using,micro,nano,bubbles,Cleaning,solution,containing,large,number,scale,has,sig,nificant,advantage,regarding,environmental,protection,This,review,first,briefly,introduces,mechanism,MNBs,including,physical,chemical,effects,Then,metal,parts,precision,cultural,relics,food,introduced,After,that,coupled,ultrasound,Finally,characterization,methods,which,mainly,focuses,changes,physico,prop,erties,mass,area,infiltration,colony,light,scattering,intensity,cleaned,like,conductivity,solvent,It,believed,technology,will,applied,broader,range,applications
AB值:
0.600772
相似文献
Machine learning-based classification of rock discontinuity trace:SMOTE oversampling integrated with GBT ensemble learning
Jiayao Chen;Hongwei Huang;Anthony G.Cohn;Dongming Zhang;Mingliang Zhou-Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education,Department of Geotechnical Engineering,Tongji University,Shanghai 200092,China;School of Computing,University of Leeds,LS2 9JT Leeds,United Kingdom;Department of Computer Science and Technology,Tongji University,Shanghai 211985,China;School of Civil Engineering,Shandong University,Jinan 250061,China;Luzhong Institute of Safety,Environmental Protection Engineering and Materials,Qingdao University of Science and Technology,Zibo 255000,China;School of Mechanical and Electrical Engineering,Qingdao University of Science and Technology,Qingdao 260061,China
Recent advancement of flow-induced piezoelectric vibration energy harvesting techniques:principles,structures,and nonlinear designs
Dongxing CAO;Junru WANG;Xiangying GUO;S.K.LAI;Yongjun SHEN-Faculty of Materials and Manufacturing,Beijing University of Technology,Beijing 100124,China;Beijing Key Laboratory of Nonlinear Vibrations and Strength of Mechanical Structures,Beijing 100124,China;School of Automation,Beijing Information Science and Technology University,Beiing 100192,China;Department of Civil and Environmental Engineering,The Hong Kong Polytechnic University,Kowloon,Hong Kong,China;Hong Kong Branch of National Rail Transit Electrification and Automation Engineering Technology Research Center,The Hong Kong Polytechnic University,Kowloon,Hong Kong,China;State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures,Shijiazhuang Tiedao University,Shijiazhuang 050043,China
Nano-enhanced biolubricant in sustainable manufacturing:From processability to mechanisms
Yanbin ZHANG;Hao Nan LI;Changhe LI;Chuanzhen HUANG;Hafiz Muhammad ALI;Xuefeng XU;Cong MAO;Wenfeng DING;Xin CUI;Min YANG;Tianbiao YU;Muhammad JAMIL;Munish Kumar GUPTA;Dongzhou JIA;Zafar SAID-School of Mechanical and Automotive Engineering,Qingdao University of Technology,Qingdao 266520,China;School of Aerospace,University of Nottingham Ningbo China,Ningbo 315100,China;School of Mechanical Engineering,Yanshan University,Qinhuangdao 066004,China;Mechanical Engineering Department,King Fahd University of Petroleum and Minerals,Dhahran 31261,Saudi Arabia;Key Laboratory of Special Purpose Equipment and Advanced Processing Technology,Ministry of Education&Zhejiang Province,Zhejiang University of Technology,Hangzhou 310032,China;College of Automotive and Mechanical Engineering,Changsha University of Science and Technology,Changsha 410114,China;College of Mechanical and Electrical Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China;School of Mechanical Engineering&Automation,Northeastern University,Shenyang 110006,China;Industrial Engineering Department,University of Engineering and Technology Taxila,Taxila 47080,Pakistan;School of Mechanical Engineering,Shandong University,Jinan 250061,China;College of Mechanical Engineering and Automation,Liaoning University of Technology,Jinzhou 121001,China;College of Engineering,University of Sharjah,Sharjah 27272,United Arab Emirates
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。